Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nature ; 577(7792): 695-700, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31969708

RESUMEN

Increased cardiac contractility during the fight-or-flight response is caused by ß-adrenergic augmentation of CaV1.2 voltage-gated calcium channels1-4. However, this augmentation persists in transgenic murine hearts expressing mutant CaV1.2 α1C and ß subunits that can no longer be phosphorylated by protein kinase A-an essential downstream mediator of ß-adrenergic signalling-suggesting that non-channel factors are also required. Here we identify the mechanism by which ß-adrenergic agonists stimulate voltage-gated calcium channels. We express α1C or ß2B subunits conjugated to ascorbate peroxidase5 in mouse hearts, and use multiplexed quantitative proteomics6,7 to track hundreds of proteins in the proximity of CaV1.2. We observe that the calcium-channel inhibitor Rad8,9, a monomeric G protein, is enriched in the CaV1.2 microenvironment but is depleted during ß-adrenergic stimulation. Phosphorylation by protein kinase A of specific serine residues on Rad decreases its affinity for ß subunits and relieves constitutive inhibition of CaV1.2, observed as an increase in channel open probability. Expression of Rad or its homologue Rem in HEK293T cells also imparts stimulation of CaV1.3 and CaV2.2 by protein kinase A, revealing an evolutionarily conserved mechanism that confers adrenergic modulation upon voltage-gated calcium channels.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Proteómica , Receptores Adrenérgicos beta/metabolismo , Animales , Canales de Calcio Tipo L/química , Canales de Calcio Tipo N/metabolismo , Microambiente Celular , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Femenino , Células HEK293 , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Humanos , Masculino , Ratones , Proteínas de Unión al GTP Monoméricas/metabolismo , Miocardio/metabolismo , Fosforilación , Dominios Proteicos , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Transducción de Señal , Proteínas ras/química , Proteínas ras/metabolismo
2.
Circ Res ; 128(1): 76-88, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33086983

RESUMEN

RATIONALE: Changing activity of cardiac CaV1.2 channels under basal conditions, during sympathetic activation, and in heart failure is a major determinant of cardiac physiology and pathophysiology. Although cardiac CaV1.2 channels are prominently upregulated via activation of PKA (protein kinase A), essential molecular details remained stubbornly enigmatic. OBJECTIVE: The primary goal of this study was to determine how various factors converging at the CaV1.2 I-II loop interact to regulate channel activity under basal conditions, during ß-adrenergic stimulation, and in heart failure. METHODS AND RESULTS: We generated transgenic mice with expression of CaV1.2 α1C subunits with (1) mutations ablating interaction between α1C and ß-subunits, (2) flexibility-inducing polyglycine substitutions in the I-II loop (GGG-α1C), or (3) introduction of the alternatively spliced 25-amino acid exon 9* mimicking a splice variant of α1C upregulated in the hypertrophied heart. Introducing 3 glycine residues that disrupt a rigid IS6-α-interaction domain helix markedly reduced basal open probability despite intact binding of CaVß to α1C I-II loop and eliminated ß-adrenergic agonist stimulation of CaV1.2 current. In contrast, introduction of the exon 9* splice variant in the α1C I-II loop, which is increased in ventricles of patients with end-stage heart failure, increased basal open probability but did not attenuate stimulatory response to ß-adrenergic agonists when reconstituted heterologously with ß2B and Rad or transgenically expressed in cardiomyocytes. CONCLUSIONS: Ca2+ channel activity is dynamically modulated under basal conditions, during ß-adrenergic stimulation, and in heart failure by mechanisms converging at the α1C I-II loop. CaVß binding to α1C stabilizes an increased channel open probability gating mode by a mechanism that requires an intact rigid linker between the ß-subunit binding site in the I-II loop and the channel pore. Release of Rad-mediated inhibition of Ca2+ channel activity by ß-adrenergic agonists/PKA also requires this rigid linker and ß-binding to α1C.


Asunto(s)
Agonistas Adrenérgicos beta/farmacología , Canales de Calcio Tipo L/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Proteínas ras/metabolismo , Animales , Canales de Calcio Tipo L/genética , Células HEK293 , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Humanos , Potenciales de la Membrana , Ratones Transgénicos , Mutación , Miocitos Cardíacos/metabolismo , Fosforilación , Conformación Proteica , Conejos , Relación Estructura-Actividad , Proteínas ras/genética
3.
Nat Cardiovasc Res ; 1(5): 1-13, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35662881

RESUMEN

Voltage-gated sodium (Nav1.5) channels support the genesis and brisk spatial propagation of action potentials in the heart. Disruption of NaV1.5 inactivation results in a small persistent Na influx known as late Na current (I Na,L), which has emerged as a common pathogenic mechanism in both congenital and acquired cardiac arrhythmogenic syndromes. Here, using low-noise multi-channel recordings in heterologous systems, LQTS3 patient-derived iPSCs cardiomyocytes, and mouse ventricular myocytes, we demonstrate that the intracellular fibroblast growth factor homologous factors (FHF1-4) tune pathogenic I Na,L in an isoform-specific manner. This scheme suggests a complex orchestration of I Na,L in cardiomyocytes that may contribute to variable disease expressivity of NaV1.5 channelopathies. We further leverage these observations to engineer a peptide-inhibitor of I Na,L with a higher efficacy as compared to a well-established small-molecule inhibitor. Overall, these findings lend insights into molecular mechanisms underlying FHF regulation of I Na,L in pathophysiology and outline potential therapeutic avenues.

4.
Channels (Austin) ; 14(1): 123-131, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32195622

RESUMEN

Activation of protein kinase A by cyclic AMP results in a multi-fold upregulation of CaV1.2 currents in the heart, as originally reported in the 1970's and 1980's. Despite considerable interest and much investment, the molecular mechanisms responsible for this signature modulation remained stubbornly elusive for over 40 years. A key manifestation of this lack of understanding is that while this regulation is readily apparent in heart cells, it has not been possible to reconstitute it in heterologous expression systems. In this review, we describe the efforts of many investigators over the past decades to identify the mechanisms responsible for the ß-adrenergic mediated activation of voltage-gated Ca2+ channels in the heart and other tissues.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Miocardio/metabolismo , Animales , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Humanos , Modelos Biológicos , Fosforilación
5.
JCI Insight ; 5(19)2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-32870823

RESUMEN

The Ca2+-binding protein calmodulin has emerged as a pivotal player in tuning Na+ channel function, although its impact in vivo remains to be resolved. Here, we identify the role of calmodulin and the NaV1.5 interactome in regulating late Na+ current in cardiomyocytes. We created transgenic mice with cardiac-specific expression of human NaV1.5 channels with alanine substitutions for the IQ motif (IQ/AA). The mutations rendered the channels incapable of binding calmodulin to the C-terminus. The IQ/AA transgenic mice exhibited normal ventricular repolarization without arrhythmias and an absence of increased late Na+ current. In comparison, transgenic mice expressing a lidocaine-resistant (F1759A) human NaV1.5 demonstrated increased late Na+ current and prolonged repolarization in cardiomyocytes, with spontaneous arrhythmias. To determine regulatory factors that prevent late Na+ current for the IQ/AA mutant channel, we considered fibroblast growth factor homologous factors (FHFs), which are within the NaV1.5 proteomic subdomain shown by proximity labeling in transgenic mice expressing NaV1.5 conjugated to ascorbate peroxidase. We found that FGF13 diminished late current of the IQ/AA but not F1759A mutant cardiomyocytes, suggesting that endogenous FHFs may serve to prevent late Na+ current in mouse cardiomyocytes. Leveraging endogenous mechanisms may furnish an alternative avenue for developing novel pharmacology that selectively blunts late Na+ current.


Asunto(s)
Potenciales de Acción , Arritmias Cardíacas/patología , Calmodulina/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Mutación , Miocitos Cardíacos/patología , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Animales , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Señalización del Calcio , Calmodulina/genética , Femenino , Factores de Crecimiento de Fibroblastos/genética , Humanos , Masculino , Ratones , Ratones Transgénicos , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/genética , Unión Proteica , Sodio/metabolismo
6.
JCI Insight ; 52019 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-31021331

RESUMEN

Atrial fibrillation (AF) is the most common cardiac arrhythmia and accounts for substantial morbidity and mortality. Recently, we created a mouse model with spontaneous and sustained AF caused by a mutation in the NaV1.5 channel (F1759A) that enhances persistent Na+ current, thereby enabling the investigation of molecular mechanisms that cause AF and the identification of novel treatment strategies. The mice have regional heterogeneity of action potential duration of the atria similar to observations in patients with AF. In these mice, we found that the initiation and persistence of the rotational reentrant AF arrhythmias, known as spiral waves or rotors, were dependent upon action potential duration heterogeneity. The centers of the rotors were localized to regions of greatest heterogeneity of the action potential duration. Pharmacologically attenuating the action potential duration heterogeneity reduced both spontaneous and pacing-induced AF. Computer-based simulations also demonstrated that the action potential duration heterogeneity is sufficient to generate rotors that manifest as AF. Taken together, these findings suggest that action potential duration heterogeneity in mice and humans is one mechanism by which AF is initiated and that reducing action potential duration heterogeneity can lessen the burden of AF.


Asunto(s)
Potenciales de Acción/fisiología , Fibrilación Atrial/metabolismo , Fibrilación Atrial/fisiopatología , Atrios Cardíacos/metabolismo , Atrios Cardíacos/fisiopatología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Fibrilación Atrial/genética , Fibrilación Atrial/patología , Simulación por Computador , Modelos Animales de Enfermedad , Electrofisiología , Femenino , Atrios Cardíacos/patología , Humanos , Masculino , Ratones , Persona de Mediana Edad , Mutación , Canal de Sodio Activado por Voltaje NAV1.5/genética , Sodio
7.
J Clin Invest ; 129(2): 647-658, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30422117

RESUMEN

Ca2+ channel ß-subunit interactions with pore-forming α-subunits are long-thought to be obligatory for channel trafficking to the cell surface and for tuning of basal biophysical properties in many tissues. Unexpectedly, we demonstrate that transgenic expression of mutant α1C subunits lacking capacity to bind CaVß can traffic to the sarcolemma in adult cardiomyocytes in vivo and sustain normal excitation-contraction coupling. However, these ß-less Ca2+ channels cannot be stimulated by ß-adrenergic pathway agonists, and thus adrenergic augmentation of contractility is markedly impaired in isolated cardiomyocytes and in hearts. Similarly, viral-mediated expression of a ß-subunit-sequestering peptide sharply curtailed ß-adrenergic stimulation of WT Ca2+ channels, identifying an approach to specifically modulate ß-adrenergic regulation of cardiac contractility. Our data demonstrate that ß subunits are required for ß-adrenergic regulation of CaV1.2 channels and positive inotropy in the heart, but are dispensable for CaV1.2 trafficking to the adult cardiomyocyte cell surface, and for basal function and excitation-contraction coupling.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Miocitos Cardíacos/metabolismo , Sarcolema/metabolismo , Animales , Canales de Calcio Tipo L/genética , Cobayas , Células HEK293 , Humanos , Ratones , Ratones Transgénicos , Transporte de Proteínas , Sarcolema/genética
8.
Neuron ; 100(6): 1401-1413.e6, 2018 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-30415995

RESUMEN

Epithelial-neuronal signaling is essential for sensory encoding in touch, itch, and nociception; however, little is known about the release mechanisms and neurotransmitter receptors through which skin cells govern neuronal excitability. Merkel cells are mechanosensory epidermal cells that have long been proposed to activate neuronal afferents through chemical synaptic transmission. We employed a set of classical criteria for chemical neurotransmission as a framework to test this hypothesis. RNA sequencing of adult mouse Merkel cells demonstrated that they express presynaptic molecules and biosynthetic machinery for adrenergic transmission. Moreover, live-cell imaging directly demonstrated that Merkel cells mediate activity- and VMAT-dependent release of fluorescent catecholamine neurotransmitter analogs. Touch-evoked firing in Merkel-cell afferents was inhibited either by pre-synaptic silencing of SNARE-mediated vesicle release from Merkel cells or by neuronal deletion of ß2-adrenergic receptors. Together, these results identify both pre- and postsynaptic mechanisms through which Merkel cells excite mechanosensory afferents to encode gentle touch. VIDEO ABSTRACT.


Asunto(s)
Adrenérgicos/metabolismo , Vías Aferentes/fisiología , Células de Merkel/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Potenciales de Acción/fisiología , Animales , Cápsulas Bacterianas/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Femenino , Ganglios Espinales/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptores Adrenérgicos beta 2 , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Serotonina 5-HT3/genética , Receptores de Serotonina 5-HT3/metabolismo , Piel/citología , Piel/inervación , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismo , Proteínas de Transporte Vesicular de Monoaminas/genética , Proteínas de Transporte Vesicular de Monoaminas/metabolismo , Proteína Wnt1/genética , Proteína Wnt1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA