RESUMEN
Declarative memory encompasses episodic and semantic divisions. Episodic memory captures singular events with specific spatiotemporal relationships, whereas semantic memory houses context-independent knowledge. Behavioural and functional neuroimaging studies have revealed common and distinct neural substrates of both memory systems, implicating mesiotemporal lobe (MTL) regions such as the hippocampus and distributed neocortices. Here, we explored declarative memory system reorganization in patients with unilateral temporal lobe epilepsy (TLE) as a human disease model to test the impact of variable degrees of MTL pathology on memory function. Our cohort included 31 patients with TLE and 60 age- and sex-matched healthy controls, and all participants underwent episodic and semantic retrieval tasks during a multimodal MRI session. The functional MRI tasks were closely matched in terms of stimuli and trial design. Capitalizing on non-linear connectome gradient-mapping techniques, we derived task-based functional topographies during episodic and semantic memory states, in both the MTL and neocortical networks. Comparing neocortical and hippocampal functional gradients between TLE patients and healthy controls, we observed a marked topographic reorganization of both neocortical and MTL systems during episodic memory states. Neocortical alterations were characterized by reduced functional differentiation in TLE across lateral temporal and midline parietal cortices in both hemispheres. In the MTL, in contrast, patients presented with a more marked functional differentiation of posterior and anterior hippocampal segments ipsilateral to the seizure focus and pathological core, indicating perturbed intrahippocampal connectivity. Semantic memory reorganization was also found in bilateral lateral temporal and ipsilateral angular regions, whereas hippocampal functional topographies were unaffected. Furthermore, leveraging MRI proxies of MTL pathology, we observed alterations in hippocampal microstructure and morphology that were associated with TLE-related functional reorganization during episodic memory. Moreover, correlation analysis and statistical mediation models revealed that these functional alterations contributed to behavioural deficits in episodic memory, but again not in semantic memory in patients. Altogether, our findings suggest that semantic processes rely on distributed neocortical networks, whereas episodic processes are supported by a network involving both the hippocampus and the neocortex. Alterations of such networks can provide a compact signature of state-dependent reorganization in conditions associated with MTL damage, such as TLE.
Asunto(s)
Epilepsia del Lóbulo Temporal , Hipocampo , Imagen por Resonancia Magnética , Memoria Episódica , Semántica , Humanos , Masculino , Femenino , Adulto , Epilepsia del Lóbulo Temporal/fisiopatología , Epilepsia del Lóbulo Temporal/patología , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Hipocampo/patología , Hipocampo/diagnóstico por imagen , Hipocampo/fisiopatología , Persona de Mediana Edad , Lóbulo Temporal/fisiopatología , Lóbulo Temporal/patología , Lóbulo Temporal/diagnóstico por imagen , Adulto Joven , Neocórtex/fisiopatología , Neocórtex/diagnóstico por imagen , Neocórtex/patología , Conectoma/métodos , Trastornos de la Memoria/etiología , Trastornos de la Memoria/fisiopatología , Trastornos de la Memoria/patología , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatología , Red Nerviosa/patologíaRESUMEN
Network neuroscience offers a unique framework to understand the organizational principles of the human brain. Despite recent progress, our understanding of how the brain is modulated by focal lesions remains incomplete. Resection of the temporal lobe is the most effective treatment to control seizures in pharmaco-resistant temporal lobe epilepsy (TLE), making this syndrome a powerful model to study lesional effects on network organization in young and middle-aged adults. Here, we assessed the downstream consequences of a focal lesion and its surgical resection on the brain's structural connectome, and explored how this reorganization relates to clinical variables at the individual patient level. We included adults with pharmaco-resistant TLE (n = 37) who underwent anterior temporal lobectomy between two imaging time points, as well as age- and sex-matched healthy controls who underwent comparable imaging (n = 31). Core to our analysis was the projection of high-dimensional structural connectome data-derived from diffusion MRI tractography from each subject-into lower-dimensional gradients. We then compared connectome gradients in patients relative to controls before surgery, tracked surgically-induced connectome reconfiguration from pre- to postoperative time points, and examined associations to patient-specific clinical and imaging phenotypes. Before surgery, individuals with TLE presented with marked connectome changes in bilateral temporo-parietal regions, reflecting an increased segregation of the ipsilateral anterior temporal lobe from the rest of the brain. Surgery-induced connectome reorganization was localized to this temporo-parietal subnetwork, but primarily involved postoperative integration of contralateral regions with the rest of the brain. Using a partial least-squares analysis, we uncovered a latent clinical imaging signature underlying this pre- to postoperative connectome reorganization, showing that patients who displayed postoperative integration in bilateral fronto-occipital cortices also had greater preoperative ipsilateral hippocampal atrophy, lower seizure frequency and secondarily generalized seizures. Our results bridge the effects of focal brain lesions and their surgical resections with large-scale network reorganization and interindividual clinical variability, thus offering new avenues to examine the fundamental malleability of the human brain.
Asunto(s)
Lobectomía Temporal Anterior , Conectoma , Epilepsia del Lóbulo Temporal , Lóbulo Temporal , Humanos , Femenino , Masculino , Adulto , Epilepsia del Lóbulo Temporal/cirugía , Epilepsia del Lóbulo Temporal/fisiopatología , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/patología , Lóbulo Temporal/patología , Lóbulo Temporal/cirugía , Lóbulo Temporal/diagnóstico por imagen , Lobectomía Temporal Anterior/métodos , Persona de Mediana Edad , Adulto Joven , Imagen de Difusión Tensora , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/patología , Epilepsia Refractaria/cirugía , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/fisiopatología , Epilepsia Refractaria/patologíaRESUMEN
Temporal lobe epilepsy (TLE), one of the most common pharmaco-resistant epilepsies, is associated with pathology of paralimbic brain regions, particularly in the mesiotemporal lobe. Cognitive dysfunction in TLE is frequent, and particularly affects episodic memory. Crucially, these difficulties challenge the quality of life of patients, sometimes more than seizures, underscoring the need to assess neural processes of cognitive dysfunction in TLE to improve patient management. Our work harnessed a novel conceptual and analytical approach to assess spatial gradients of microstructural differentiation between cortical areas based on high-resolution MRI analysis. Gradients track region-to-region variations in intracortical lamination and myeloarchitecture, serving as a system-level measure of structural and functional reorganization. Comparing cortex-wide microstructural gradients between 21 patients and 35 healthy controls, we observed a reorganization of this gradient in TLE driven by reduced microstructural differentiation between paralimbic cortices and the remaining cortex with marked abnormalities in ipsilateral temporopolar and dorsolateral prefrontal regions. Findings were replicated in an independent cohort. Using an independent post-mortem dataset, we observed that in vivo findings reflected topographical variations in cortical cytoarchitecture. We indeed found that macroscale changes in microstructural differentiation in TLE reflected increased similarity of paralimbic and primary sensory/motor regions. Disease-related transcriptomics could furthermore show specificity of our findings to TLE over other common epilepsy syndromes. Finally, microstructural dedifferentiation was associated with cognitive network reorganization seen during an episodic memory functional MRI paradigm and correlated with interindividual differences in task accuracy. Collectively, our findings showing a pattern of reduced microarchitectural differentiation between paralimbic regions and the remaining cortex provide a structurally-grounded explanation for large-scale functional network reorganization and cognitive dysfunction characteristic of TLE.
Asunto(s)
Epilepsia del Lóbulo Temporal , Humanos , Epilepsia del Lóbulo Temporal/patología , Calidad de Vida , Encéfalo/patología , Imagen por Resonancia Magnética , Mapeo EncefálicoRESUMEN
OBJECTIVE: Temporal lobe epilepsy (TLE) is typically associated with pathology of the hippocampus, a key structure involved in relational memory, including episodic, semantic, and spatial memory processes. While it is widely accepted that TLE-associated hippocampal alterations underlie memory deficits, it remains unclear whether impairments relate to a specific cognitive domain or multiple ones. METHODS: We administered a recently validated task paradigm to evaluate episodic, semantic, and spatial memory in 24 pharmacoresistant TLE patients and 50 age- and sex-matched healthy controls. We carried out two-way analyses of variance to identify memory deficits in individuals with TLE relative to controls across different relational memory domains, and used partial least squares correlation to identify factors contributing to variations in relational memory performance across both cohorts. RESULTS: Compared to controls, TLE patients showed marked impairments in episodic and spatial memory, with mixed findings in semantic memory. Even when additionally controlling for age, sex, and overall cognitive function, between-group differences persisted along episodic and spatial domains. Moreover, age, diagnostic group, and hippocampal volume were all associated with relational memory behavioral phenotypes. SIGNIFICANCE: Our behavioral findings show graded deficits across relational memory domains in people with TLE, which provides further insights into the complex pattern of cognitive impairment in the condition.
Asunto(s)
Epilepsia del Lóbulo Temporal , Trastornos de la Memoria , Memoria Episódica , Humanos , Epilepsia del Lóbulo Temporal/psicología , Epilepsia del Lóbulo Temporal/complicaciones , Masculino , Femenino , Adulto , Trastornos de la Memoria/etiología , Persona de Mediana Edad , Pruebas Neuropsicológicas , Hipocampo/patología , Adulto Joven , Memoria Espacial/fisiología , SemánticaRESUMEN
BACKGROUND: Higher-order cognition is hypothesized to be implemented via distributed cortical networks that are linked via long-range connections. However, it is unknown how computational advantages of long-range connections reflect cortical microstructure and microcircuitry. METHODS: We investigated this question by (i) profiling long-range cortical connectivity using resting-state functional magnetic resonance imaging (MRI) and cortico-cortical geodesic distance mapping, (ii) assessing how long-range connections reflect local brain microarchitecture, and (iii) examining the microarchitectural similarity of regions connected through long-range connections. RESULTS: Analysis of 2 independent datasets indicated that sensory/motor areas had more clustered short-range connections, while transmodal association systems hosted distributed, long-range connections. Meta-analytical decoding suggested that this topographical difference mirrored shifts in cognitive function, from perception/action towards emotional/social processing. Analysis of myelin-sensitive in vivo MRI as well as postmortem histology and transcriptomics datasets established that gradients in functional connectivity distance are paralleled by those present in cortical microarchitecture. Notably, long-range connections were found to link spatially remote regions of association cortex with an unexpectedly similar microarchitecture. CONCLUSIONS: By mapping covarying topographies of long-range functional connections and cortical microcircuits, the current work provides insights into structure-function relations in human neocortex.
Asunto(s)
Conectoma , Neocórtex , Humanos , Imagen por Resonancia Magnética/métodos , Mapeo Encefálico/métodos , Cognición , Emociones , Vías Nerviosas , Conectoma/métodosRESUMEN
OBJECTIVE: Temporal lobe epilepsy (TLE) is the most common pharmacoresistant epilepsy in adults. Here we profiled local neural function in TLE in vivo, building on prior evidence that has identified widespread structural alterations. Using resting-state functional magnetic resonance imaging (rs-fMRI), we mapped the whole-brain intrinsic neural timescales (INT), which reflect temporal hierarchies of neural processing. Parallel analysis of structural and diffusion MRI data examined associations with TLE-related structural compromise. Finally, we evaluated the clinical utility of INT. METHODS: We studied 46 patients with TLE and 44 healthy controls from two independent sites, and mapped INT changes in patients relative to controls across hippocampal, subcortical, and neocortical regions. We examined region-specific associations to structural alterations and explored the effects of age and epilepsy duration. Supervised machine learning assessed the utility of INT for identifying patients with TLE vs controls and left- vs right-sided seizure onset. RESULTS: Relative to controls, TLE showed marked INT reductions across multiple regions bilaterally, indexing faster changing resting activity, with strongest effects in the ipsilateral medial and lateral temporal regions, and bilateral sensorimotor cortices as well as thalamus and hippocampus. Findings were similar, albeit with reduced effect sizes, when correcting for structural alterations. INT reductions in TLE increased with advancing disease duration, yet findings differed from the aging effects seen in controls. INT-derived classifiers discriminated patients vs controls (balanced accuracy, 5-fold: 76% ± 2.65%; cross-site, 72%-83%) and lateralized the focus in TLE (balanced accuracy, 5-fold: 96% ± 2.10%; cross-site, 95%-97%), with high accuracy and cross-site generalizability. Findings were consistent across both acquisition sites and robust when controlling for motion and several methodological confounds. SIGNIFICANCE: Our findings demonstrate atypical macroscale function in TLE in a topography that extends beyond mesiotemporal epicenters. INT measurements can assist in TLE diagnosis, seizure focus lateralization, and monitoring of disease progression, which emphasizes promising clinical utility.
Asunto(s)
Epilepsia del Lóbulo Temporal , Adulto , Humanos , Epilepsia del Lóbulo Temporal/diagnóstico , Imagen por Resonancia Magnética/métodos , Hipocampo/diagnóstico por imagen , Lóbulo Temporal , ConvulsionesRESUMEN
The vast net of fibres within and underneath the cortex is optimised to support the convergence of different levels of brain organisation. Here, we propose a novel coordinate system of the human cortex based on an advanced model of its connectivity. Our approach is inspired by seminal, but so far largely neglected models of cortico-cortical wiring established by postmortem anatomical studies and capitalises on cutting-edge in vivo neuroimaging and machine learning. The new model expands the currently prevailing diffusion magnetic resonance imaging (MRI) tractography approach by incorporation of additional features of cortical microstructure and cortico-cortical proximity. Studying several datasets and different parcellation schemes, we could show that our coordinate system robustly recapitulates established sensory-limbic and anterior-posterior dimensions of brain organisation. A series of validation experiments showed that the new wiring space reflects cortical microcircuit features (including pyramidal neuron depth and glial expression) and allowed for competitive simulations of functional connectivity and dynamics based on resting-state functional magnetic resonance imaging (rs-fMRI) and human intracranial electroencephalography (EEG) coherence. Our results advance our understanding of how cell-specific neurobiological gradients produce a hierarchical cortical wiring scheme that is concordant with increasing functional sophistication of human brain organisation. Our evaluations demonstrate the cortical wiring space bridges across scales of neural organisation and can be easily translated to single individuals.
Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/fisiología , Conectoma/métodos , Adulto , Encéfalo/diagnóstico por imagen , Corteza Cerebral/anatomía & histología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/fisiología , Imagen de Difusión por Resonancia Magnética , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/patología , Epilepsia Refractaria/fisiopatología , Electrocorticografía , Epilepsias Parciales/diagnóstico por imagen , Epilepsias Parciales/patología , Epilepsias Parciales/fisiopatología , Femenino , Neuroimagen Funcional , Humanos , Aprendizaje Automático , Masculino , Modelos Anatómicos , Modelos Neurológicos , Red Nerviosa/anatomía & histología , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiología , Adulto JovenRESUMEN
Temporal lobe epilepsy, a common drug-resistant epilepsy in adults, is primarily a limbic network disorder associated with predominant unilateral hippocampal pathology. Structural MRI has provided an in vivo window into whole-brain grey matter structural alterations in temporal lobe epilepsy relative to controls, by either mapping (i) atypical inter-hemispheric asymmetry; or (ii) regional atrophy. However, similarities and differences of both atypical asymmetry and regional atrophy measures have not been systematically investigated. Here, we addressed this gap using the multisite ENIGMA-Epilepsy dataset comprising MRI brain morphological measures in 732 temporal lobe epilepsy patients and 1418 healthy controls. We compared spatial distributions of grey matter asymmetry and atrophy in temporal lobe epilepsy, contextualized their topographies relative to spatial gradients in cortical microstructure and functional connectivity calculated using 207 healthy controls obtained from Human Connectome Project and an independent dataset containing 23 temporal lobe epilepsy patients and 53 healthy controls and examined clinical associations using machine learning. We identified a marked divergence in the spatial distribution of atypical inter-hemispheric asymmetry and regional atrophy mapping. The former revealed a temporo-limbic disease signature while the latter showed diffuse and bilateral patterns. Our findings were robust across individual sites and patients. Cortical atrophy was significantly correlated with disease duration and age at seizure onset, while degrees of asymmetry did not show a significant relationship to these clinical variables. Our findings highlight that the mapping of atypical inter-hemispheric asymmetry and regional atrophy tap into two complementary aspects of temporal lobe epilepsy-related pathology, with the former revealing primary substrates in ipsilateral limbic circuits and the latter capturing bilateral disease effects. These findings refine our notion of the neuropathology of temporal lobe epilepsy and may inform future discovery and validation of complementary MRI biomarkers in temporal lobe epilepsy.
Asunto(s)
Conectoma , Epilepsia del Lóbulo Temporal , Adulto , Atrofia/patología , Epilepsia del Lóbulo Temporal/patología , Hipocampo/patología , Humanos , Imagen por Resonancia MagnéticaRESUMEN
Ongoing brain function is largely determined by the underlying wiring of the brain, but the specific rules governing this relationship remain unknown. Emerging literature has suggested that functional interactions between brain regions emerge from the structural connections through mono- as well as polysynaptic mechanisms. Here, we propose a novel approach based on diffusion maps and Riemannian optimization to emulate this dynamic mechanism in the form of random walks on the structural connectome and predict functional interactions as a weighted combination of these random walks. Our proposed approach was evaluated in two different cohorts of healthy adults (Human Connectome Project, HCP; Microstructure-Informed Connectomics, MICs). Our approach outperformed existing approaches and showed that performance plateaus approximately around the third random walk. At macroscale, we found that the largest number of walks was required in nodes of the default mode and frontoparietal networks, underscoring an increasing relevance of polysynaptic communication mechanisms in transmodal cortical networks compared to primary and unimodal systems.
Asunto(s)
Conectoma , Adulto , Humanos , Encéfalo/diagnóstico por imagen , Imagen de Difusión Tensora , Imagen por Resonancia Magnética , Red Nerviosa/diagnóstico por imagenRESUMEN
Multimodal magnetic resonance imaging (MRI) has accelerated human neuroscience by fostering the analysis of brain microstructure, geometry, function, and connectivity across multiple scales and in living brains. The richness and complexity of multimodal neuroimaging, however, demands processing methods to integrate information across modalities and to consolidate findings across different spatial scales. Here, we present micapipe, an open processing pipeline for multimodal MRI datasets. Based on BIDS-conform input data, micapipe can generate i) structural connectomes derived from diffusion tractography, ii) functional connectomes derived from resting-state signal correlations, iii) geodesic distance matrices that quantify cortico-cortical proximity, and iv) microstructural profile covariance matrices that assess inter-regional similarity in cortical myelin proxies. The above matrices can be automatically generated across established 18 cortical parcellations (100-1000 parcels), in addition to subcortical and cerebellar parcellations, allowing researchers to replicate findings easily across different spatial scales. Results are represented on three different surface spaces (native, conte69, fsaverage5), and outputs are BIDS-conform. Processed outputs can be quality controlled at the individual and group level. micapipe was tested on several datasets and is available at https://github.com/MICA-MNI/micapipe, documented at https://micapipe.readthedocs.io/, and containerized as a BIDS App http://bids-apps.neuroimaging.io/apps/. We hope that micapipe will foster robust and integrative studies of human brain microstructure, morphology, function, cand connectivity.
Asunto(s)
Conectoma , Procesamiento Automatizado de Datos , Neuroimagen , Programas Informáticos , Humanos , Encéfalo/diagnóstico por imagen , Encéfalo/anatomía & histología , Conectoma/métodos , Imagen de Difusión Tensora , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Programas Informáticos/normas , Procesamiento Automatizado de Datos/métodos , Procesamiento Automatizado de Datos/normasRESUMEN
Epilepsy is a disorder of brain networks. A better understanding of structural and dynamic network properties may improve epilepsy diagnosis, treatment, and prognostics. Hubs are brain regions with high connectivity to other parts of the brain and are typically situated along the brain's most efficient communication pathways, supporting large-scale brain wiring and many higher order neural functions. The visualization and analysis of hubs offers a perspective on regional and global network organization and can provide novel insights into brain disorders and epilepsy. By notably supporting the interaction between various brain networks, hubs may be implicated in seizure spread and in epilepsy-related phenotypes. In this review, we will discuss the growing literature on atypical hub organization in common epilepsy syndromes, both related to neuroimaging of brain structure and function, and related to neurophysiological data from magneto- and electroencephalographic measures of neural dynamics. With studies increasingly exploring the clinical utility of network neuroscience approaches, we highlight the potential of hub mapping as a candidate biomarker of cognitive dysfunction and postsurgical seizure outcome. We will conclude the review with a discussion of current limitations and outlook for future research.
Asunto(s)
Conectoma , Epilepsia , Encéfalo , Mapeo Encefálico , Conectoma/métodos , Electroencefalografía , Epilepsia/diagnóstico , Humanos , Imagen por Resonancia Magnética/métodos , Red Nerviosa , Vías Nerviosas , ConvulsionesRESUMEN
Episodic memory is the ability to remember events from our past accurately. The process of pattern separation is hypothesized to underpin this ability and is defined as the capacity to orthogonalize memory traces, to maximize the features that make them unique. Contemporary cognitive neuroscience suggests that pattern separation entails complex interactions between the hippocampus and neocortex, where specific hippocampal subregions shape neural reinstatement in the neocortex. To test this hypothesis, the current work studied both healthy controls and patients with temporal lobe epilepsy who presented with hippocampal structural anomalies. We measured neural activity in all participants using functional MRI while they retrieved memorized items or lure items, which shared features with the target. Behaviourally, patients with temporal lobe epilepsy were less able to exclude lures than controls and showed a reduction in pattern separation. To assess the hypothesized relationship between neural patterns in the hippocampus and neocortex, we identified the topographic gradients of intrinsic connectivity along neocortical and hippocampal subfield surfaces and determined the topographic profile of the neural activity accompanying pattern separation. In healthy controls, pattern separation followed a graded topography of neural activity, both along the hippocampal long axis (and peaked in anterior segments that are more heavily engaged in transmodal processing) and along the neocortical hierarchy running from unimodal to transmodal regions (peaking in transmodal default mode regions). In patients with temporal lobe epilepsy, however, this concordance between task-based functional activations and topographic gradients was markedly reduced. Furthermore, person-specific measures of concordance between task-related activity and connectivity gradients in patients and controls were related to inter-individual differences in behavioural measures of pattern separation and episodic memory, highlighting the functional relevance of the observed topographic motifs. Our work is consistent with an emerging understanding that successful discrimination between memories with similar features entails a shift in the locus of neural activity away from sensory systems, a pattern that is mirrored along the hippocampal long axis and with respect to neocortical hierarchies. More broadly, our study establishes topographic profiling using intrinsic connectivity gradients, capturing the functional underpinnings of episodic memory processes in a manner that is sensitive to their reorganization in pathology.
Asunto(s)
Encéfalo/diagnóstico por imagen , Cognición/fisiología , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Memoria Episódica , Adulto , Conectoma , Femenino , Lateralidad Funcional/fisiología , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Pruebas Neuropsicológicas , Adulto JovenRESUMEN
Prior research has shown a role of the medial temporal lobe, particularly the hippocampal-parahippocampal complex, in spatial cognition. Here, we developed a new paradigm, the conformational shift spatial task (CSST), which examines the ability to encode and retrieve spatial relations between unrelated items. This task is short, uses symbolic cues, incorporates two difficulty levels, and can be administered inside the scanner. A cohort of 48 healthy young adults underwent the CSST, together with a set of behavioral measures and multimodal magnetic resonance imaging (MRI). Inter-individual differences in CSST performance correlated with scores on an established spatial memory paradigm, but neither with episodic memory nor mnemonic discrimination, supporting specificity. Analyzing high-resolution structural MRI data, individuals with better spatial memory showed thicker medial and lateral temporal cortices. Functional relevance of these findings was supported by task-based functional MRI analysis in the same participants and ad hoc meta-analysis. Exploratory resting-state functional MRI analyses centered on clusters of morphological effects revealed additional modulation of intrinsic network integration, particularly between lateral and medial temporal structures. Our work presents a novel spatial memory paradigm and supports an integrated structure-function substrate in the human temporal lobe. Task paradigms are programmed in python and made open access.
Asunto(s)
Memoria/fisiología , Estimulación Luminosa/métodos , Desempeño Psicomotor/fisiología , Percepción Espacial/fisiología , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Temporal/fisiología , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , SemánticaRESUMEN
The temporal lobe is implicated in higher cognitive processes and is one of the regions that underwent substantial reorganization during primate evolution. Its functions are instantiated, in part, by the complex layout of its structural connections. Here, we identified low-dimensional representations of structural connectivity variations in human temporal cortex and explored their microstructural underpinnings and associations to macroscale function. We identified three eigenmodes which described gradients in structural connectivity. These gradients reflected inter-regional variations in cortical microstructure derived from quantitative magnetic resonance imaging and postmortem histology. Gradient-informed models accurately predicted macroscale measures of temporal lobe function. Furthermore, the identified gradients aligned closely with established measures of functional reconfiguration and areal expansion between macaques and humans, highlighting their potential role in shaping temporal lobe function throughout primate evolution. Findings were replicated in several datasets. Our results provide robust evidence for three axes of structural connectivity in human temporal cortex with consistent microstructural underpinnings and contributions to large-scale brain network function.
Asunto(s)
Conectoma , Epilepsia del Lóbulo Temporal , Encéfalo/diagnóstico por imagen , Conectoma/métodos , Humanos , Imagen por Resonancia Magnética/métodos , Lóbulo Temporal/diagnóstico por imagenRESUMEN
Human cognition is dynamic, alternating over time between externally-focused states and more abstract, often self-generated, patterns of thought. Although cognitive neuroscience has documented how networks anchor particular modes of brain function, mechanisms that describe transitions between distinct functional states remain poorly understood. Here, we examined how time-varying changes in brain function emerge within the constraints imposed by macroscale structural network organization. Studying a large cohort of healthy adults (n = 326), we capitalized on manifold learning techniques that identify low dimensional representations of structural connectome organization and we decomposed neurophysiological activity into distinct functional states and their transition patterns using Hidden Markov Models. Structural connectome organization predicted dynamic transitions anchored in sensorimotor systems and those between sensorimotor and transmodal states. Connectome topology analyses revealed that transitions involving sensorimotor states traversed short and intermediary distances and adhered strongly to communication mechanisms of network diffusion. Conversely, transitions between transmodal states involved spatially distributed hubs and increasingly engaged long-range routing. These findings establish that the structure of the cortex is optimized to allow neural states the freedom to vary between distinct modes of processing, and so provides a key insight into the neural mechanisms that give rise to the flexibility of human cognition.
Asunto(s)
Encéfalo/diagnóstico por imagen , Conectoma , Imagen de Difusión por Resonancia Magnética , Neuroimagen Funcional , Imagen por Resonancia Magnética , Adulto , Encéfalo/fisiología , Cognición , Femenino , Humanos , Masculino , Cadenas de Markov , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiología , Adulto JovenRESUMEN
Insular cortex is a core hub involved in multiple cognitive and socio-affective processes. Yet, the anatomical mechanisms that explain how it is involved in such a diverse array of functions remain incompletely understood. Here, we tested the hypothesis that changes in myeloarchitecture across the insular cortex explain how it can be involved in many different facets of cognitive function. Detailed intracortical profiling, performed across hundreds of insular locations on the basis of myelin-sensitive magnetic resonance imaging (MRI), was compressed into a lower-dimensional space uncovering principal axes of myeloarchitectonic variation. Leveraging two datasets with different high-resolution MRI contrasts, we obtained robust support for two principal dimensions of insular myeloarchitectonic differentiation in vivo, one running from ventral anterior to posterior banks and one radiating from dorsal anterior towards both ventral anterior and posterior subregions. Analyses of post mortem 3D histological data showed that the antero-posterior axis was mirrored in cytoarchitectural markers, even when controlling for sulco-gyral folding. Resting-state functional connectomics in the same individuals and ad hoc meta-analyses showed that myelin gradients in the insula relate to diverse affiliation to macroscale intrinsic functional systems, showing differential shifts in functional network embedding across each myelin-derived gradient. Collectively, our findings offer a novel approach to capture structure-function interactions of a key node of the limbic system, and suggest a multidimensional structural basis underlying the diverse functional roles of the insula.
Asunto(s)
Corteza Cerebral , Conectoma/métodos , Sistema Límbico , Imagen por Resonancia Magnética/métodos , Vaina de Mielina , Adulto , Anciano , Corteza Cerebral/anatomía & histología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/fisiología , Diagnóstico , Femenino , Humanos , Sistema Límbico/anatomía & histología , Sistema Límbico/diagnóstico por imagen , Sistema Límbico/fisiología , Masculino , Adulto JovenRESUMEN
OBJECTIVE: Temporal lobe epilepsy (TLE) is the most common drug-resistant epilepsy in adults. Although it is commonly related to hippocampal pathology, increasing evidence suggests structural changes beyond the mesiotemporal lobe. Functional anomalies and their link to underlying structural alterations, however, remain incompletely understood. METHODS: We studied 30 drug-resistant TLE patients and 57 healthy controls using multimodal magnetic resonance imaging (MRI) analyses. All patients had histologically verified hippocampal sclerosis and underwent postoperative imaging to outline the extent of their surgical resection. Our analysis leveraged a novel resting-state functional MRI framework that parameterizes functional connectivity distance, consolidating topological and physical properties of macroscale brain networks. Functional findings were integrated with morphological and microstructural metrics, and utility for surgical outcome prediction was assessed using machine learning techniques. RESULTS: Compared to controls, TLE patients showed connectivity distance reductions in temporoinsular and prefrontal networks, indicating topological segregation of functional networks. Testing for morphological and microstructural associations, we observed that functional connectivity contractions occurred independently from TLE-related cortical atrophy but were mediated by microstructural changes in the underlying white matter. Following our imaging study, all patients underwent an anterior temporal lobectomy as a treatment of their seizures, and postsurgical seizure outcome was determined at a follow-up at least 1 year after surgery. Using a regularized supervised machine learning paradigm with fivefold cross-validation, we demonstrated that patient-specific functional anomalies predicted postsurgical seizure outcome with 76 ± 4% accuracy, outperforming classifiers operating on clinical and structural imaging features. SIGNIFICANCE: Our findings suggest connectivity distance contractions as a macroscale substrate of TLE. Functional topological isolation may represent a microstructurally mediated network mechanism that tilts the balance toward epileptogenesis in affected networks and that may assist in patient-specific surgical prognostication.
Asunto(s)
Conectoma/métodos , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/cirugía , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatología , Adolescente , Adulto , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Encéfalo/cirugía , Epilepsia del Lóbulo Temporal/fisiopatología , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Red Nerviosa/cirugía , Valor Predictivo de las Pruebas , Resultado del Tratamiento , Adulto JovenRESUMEN
Aging is characterized by accumulation of structural and metabolic changes in the brain. Recent studies suggest transmodal brain networks are especially sensitive to aging, which, we hypothesize, may be due to their apical position in the cortical hierarchy. Studying an open-access healthy cohort (n = 102, age range = 30-89 years) with MRI and Aß PET data, we estimated age-related cortical thinning, hippocampal atrophy and Aß deposition. In addition to carrying out surface-based morphological and metabolic mapping experiments, we stratified effects along neocortical and hippocampal resting-state functional connectome gradients derived from independent datasets. The cortical gradient depicts an axis of functional differentiation from sensory-motor regions to transmodal regions, whereas the hippocampal gradient recapitulates its long-axis. While age-related thinning and increased Aß deposition occurred across the entire cortical topography, increased Aß deposition was especially pronounced toward higher-order transmodal regions. Age-related atrophy was greater toward the posterior end of the hippocampal long-axis. No significant effect of age on Aß deposition in the hippocampus was observed. Imaging markers correlated with behavioral measures of fluid intelligence and episodic memory in a topography-specific manner, confirmed using both univariate as well as multivariate analyses. Our results strengthen existing evidence of structural and metabolic change in the aging brain and support the use of connectivity gradients as a compact framework to analyze and conceptualize brain-based biomarkers of aging.
Asunto(s)
Envejecimiento/fisiología , Mapeo Encefálico/tendencias , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Conectoma/tendencias , Imagen Multimodal/tendencias , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Mapeo Encefálico/métodos , Conectoma/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Imagen Multimodal/métodosRESUMEN
Face-recognition abilities differ largely in the neurologically typical population. We examined how the use of information varies with face-recognition ability from developmental prosopagnosics to super-recognizers. Specifically, we investigated the use of facial features at different spatial scales in 112 individuals, including 5 developmental prosopagnosics and 8 super-recognizers, during an online famous-face-identification task using the bubbles method. We discovered that viewing of the eyes and mouth to identify faces at relatively high spatial frequencies is strongly correlated with face-recognition ability, evaluated from two independent measures. We also showed that the abilities of developmental prosopagnosics and super-recognizers are explained by a model that predicts face-recognition ability from the use of information built solely from participants with intermediate face-recognition abilities ( n = 99). This supports the hypothesis that the use of information varies quantitatively from developmental prosopagnosics to super-recognizers as a function of face-recognition ability.