Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Cell ; 140(2): 235-45, 2010 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-20141837

RESUMEN

The mechanisms that safeguard cells against chromosomal instability (CIN) are of great interest, as CIN contributes to tumorigenesis. To gain insight into these mechanisms, we studied the behavior of cells entering mitosis with damaged chromosomes. We used the endonuclease I-CreI to generate acentric chromosomes in Drosophila larvae. While I-CreI expression produces acentric chromosomes in the majority of neuronal stem cells, remarkably, it has no effect on adult survival. Our live studies reveal that acentric chromatids segregate efficiently to opposite poles. The acentric chromatid poleward movement is mediated through DNA tethers decorated with BubR1, Polo, INCENP, and Aurora-B. Reduced BubR1 or Polo function results in abnormal segregation of acentric chromatids, a decrease in acentric chromosome tethering, and a great reduction in adult survival. We propose that BubR1 and Polo facilitate the accurate segregation of acentric chromatids by maintaining the integrity of the tethers that connect acentric chromosomes to their centric partners.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Centrómero/metabolismo , Segregación Cromosómica , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Cromosomas/metabolismo , Roturas del ADN de Doble Cadena , Mitosis , Cromosoma X/metabolismo
2.
J Cell Sci ; 133(13)2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32487663

RESUMEN

The DNA damage sensor Mre11-Rad50-Nbs1 complex and Polo kinase are recruited to DNA lesions during mitosis. However, their mechanism of recruitment is elusive. Here, using live-cell imaging combined with micro-irradiation of single chromosomes, we analyze the dynamics of Polo and Mre11 at DNA lesions during mitosis in Drosophila These two proteins display distinct kinetics. Whereas Polo kinetics at double-strand breaks (DSBs) are Cdk1-driven, Mre11 promptly but briefly associates with DSBs regardless of the phase of mitosis and re-associates with DSBs in the proceeding interphase. Mechanistically, Polo kinase activity is required for its own recruitment and that of the mitotic proteins BubR1 and Bub3 to DSBs. Moreover, depletion of Rad50 severely impaired Polo kinetics at mitotic DSBs. Conversely, ectopic tethering of Mre11 to chromatin was sufficient to recruit Polo. Our study highlights a novel pathway that links the DSB sensor Mre11-Rad50-Nbs1 complex and Polo kinase to initiate a prompt, decisive response to the presence of DNA damage during mitosis.


Asunto(s)
Proteínas de Drosophila , Drosophila , Ácido Anhídrido Hidrolasas , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ADN , Reparación del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Endodesoxirribonucleasas/genética , Exodesoxirribonucleasas , Proteína Homóloga de MRE11/genética , Mitosis/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
3.
Elife ; 122024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38527106

RESUMEN

Cells fine-tune microtubule assembly in both space and time to give rise to distinct edifices with specific cellular functions. In proliferating cells, microtubules are highly dynamics, and proliferation cessation often leads to their stabilization. One of the most stable microtubule structures identified to date is the nuclear bundle assembled in quiescent yeast. In this article, we characterize the original multistep process driving the assembly of this structure. This Aurora B-dependent mechanism follows a precise temporality that relies on the sequential actions of kinesin-14, kinesin-5, and involves both microtubule-kinetochore and kinetochore-kinetochore interactions. Upon quiescence exit, the microtubule bundle is disassembled via a cooperative process involving kinesin-8 and its full disassembly is required prior to cells re-entry into proliferation. Overall, our study provides the first description, at the molecular scale, of the entire life cycle of a stable microtubule structure in vivo and sheds light on its physiological function.


Asunto(s)
Cinesinas , Microtúbulos , Cinesinas/genética , Cinetocoros , División Celular , Saccharomyces cerevisiae , Proteínas Asociadas a Microtúbulos
4.
Nat Commun ; 14(1): 3209, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37268622

RESUMEN

Cytokinesis partitions cellular content between daughter cells. It relies on the formation of an acto-myosin contractile ring, whose constriction induces the ingression of the cleavage furrow between the segregated chromatids. Rho1 GTPase and its RhoGEF (Pbl) are essential for this process. However, how Rho1 is regulated to sustain furrow ingression while maintaining correct furrow position remains poorly defined. Here, we show that during asymmetric division of Drosophila neuroblasts, Rho1 is controlled by two Pbl isoforms with distinct localisation. Spindle midzone- and furrow-enriched Pbl-A focuses Rho1 at the furrow to sustain efficient ingression, while Pbl-B pan-plasma membrane localization promotes the broadening of Rho1 activity and the subsequent enrichment of myosin on the entire cortex. This enlarged zone of Rho1 activity is critical to adjust furrow position, thereby preserving correct daughter cell size asymmetry. Our work highlights how the use of isoforms with distinct localisation makes an essential process more robust.


Asunto(s)
División Celular Asimétrica , Citocinesis , Animales , Factores de Intercambio de Guanina Nucleótido Rho , Drosophila , Membrana Celular , Isoformas de Proteínas/genética , Huso Acromático
5.
ACS Chem Biol ; 16(11): 2307-2314, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34590826

RESUMEN

Bioorthogonal chemical reporters, in synergy with click chemistry, have emerged as a key technology for tagging complex glycans in living cells. This strategy relies on the fact that bioorthogonal chemical reporters are highly reactive species while being biologically noninvasive. Here, we report that chemical reporters and especially sydnones may have, on the contrary, enormous impact on biomolecule processing enzymes. More specifically, we show that editing cell-surface sialic acid-containing glycans (sialosides) with bioorthogonal chemical reporters can significantly affect the activity of bacterial sialidases, enzymes expressed by bacteria during pathogenesis for cleaving sialic acid sugars from mammalian cell-surface glycans. Upon screening various chemical reporters, as well as their position on the sialic acid residue, we identified that pathogenic bacterial sialidases were unable to cleave sialosides displaying a sydnone at the 5-position of sialic acids in vitro as well as in living cells. This study highlights the importance of investigating more systematically the metabolic fate of glycoconjugates modified with bioorthogonal reporters.


Asunto(s)
Bacterias/enzimología , Membrana Celular/química , Neuraminidasa/metabolismo , Ácidos Siálicos/química , Antígenos CD/genética , Antígenos CD/metabolismo , Biomarcadores/metabolismo , Línea Celular Tumoral , Regulación de la Expresión Génica , Humanos , Neuraminidasa/genética , Sialiltransferasas/genética , Sialiltransferasas/metabolismo , Especificidad por Sustrato
6.
Mol Biol Cell ; 18(9): 3313-22, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17581858

RESUMEN

Animal cytokinesis relies on membrane addition as well as acto-myosin-based constriction. Recycling endosome (RE)-derived vesicles are a key source of this membrane. Rab11, a small GTPase associated with the RE and involved in vesicle targeting, is required for elongation of the cytokinetic furrow. In the early Drosophila embryo, Nuclear-fallout (Nuf), a Rab11 effector, promotes vesicle-mediated membrane delivery and actin organization at the invaginating furrow. Although Rab11 maintains a relatively constant localization at the microtubule-organizing center (MTOC), Nuf is present at the MTOC only during the phases of the cell cycle in which furrow invagination occurs. We demonstrate that Nuf protein levels remain relatively constant throughout the cell cycle, suggesting that Nuf is undergoing cycles of concentration and dispersion from the MTOC. Microtubules, but not microfilaments, are required for proper MTOC localization of Nuf and Rab11. The MTOC localization of Nuf also relies on Dynein. Immunoprecipitation experiments demonstrate that Nuf and Dynein physically interact. In accord with these findings, and in contrast to previous reports, we demonstrate that microtubules are required for proper metaphase furrow formation. We propose that the cell cycle-regulated, Dynein-dependent recruitment of Nuf to the MTOC influences the timing of RE-based vesicle delivery to the invaginating furrows.


Asunto(s)
Ciclo Celular , Proteínas de Drosophila/metabolismo , Dineínas/metabolismo , Centro Organizador de los Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Anafase , Animales , Centrosoma/metabolismo , Drosophila melanogaster/embriología , Embrión no Mamífero/citología , Inmunoprecipitación , Microtúbulos/metabolismo , Profase , Unión Proteica , Transporte de Proteínas , Telofase
7.
J Cell Biol ; 158(1): 127-37, 2002 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-12105185

RESUMEN

The nuclei of early syncytial Drosophila embryos migrate dramatically toward the poles. The cellular mechanisms driving this process, called axial expansion, are unclear, but myosin II activity is required. By following regulatory myosin light chain (RLC)-green fluorescent protein dynamics in living embryos, we observed cycles of myosin recruitment to the cortex synchronized with mitotic cycles. Cortical myosin is first seen in a patch at the anterocentral part of the embryo at cycle 4. With each succeeding cycle, the patch expands poleward, dispersing at the beginning of each mitosis and reassembling at the end of telophase. Each cycle of actin and myosin recruitment is accompanied by a cortical contraction. The cortical myosin cycle does not require microtubules but correlates inversely with Cdc2/cyclinB (mitosis-promoting factor) activity. A mutant RLC lacking inhibitory phosphorylation sites was fully functional with no effect on the cortical myosin cycle, indicating that Cdc2 must be modulating myosin activity by some other mechanism. An inhibitor of Rho kinase blocks the cortical myosin recruitment cycles and provokes a concomitant failure of axial expansion. These studies suggest a model in which cycles of myosin-mediated contraction and relaxation, tightly linked to Cdc2 and Rho kinase activity, are directly responsible for the axial expansion of the syncytial nuclei.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Núcleo Celular/metabolismo , Drosophila/embriología , Regulación de la Expresión Génica , Miosina Tipo II/metabolismo , Animales , Western Blotting , Ciclo Celular , Colchicina/farmacología , Ciclina B/metabolismo , Proteínas de Drosophila , Glutatión Transferasa/metabolismo , Proteínas Fluorescentes Verdes , Proteínas Luminiscentes/metabolismo , Microscopía Confocal , Microscopía Fluorescente , Microscopía por Video , Mitosis , Modelos Biológicos , Mutación , Miosinas/metabolismo , Fosforilación , Proteínas Recombinantes de Fusión/metabolismo , Factores de Tiempo , Transgenes
8.
Cell Rep ; 28(1): 119-131.e4, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31269434

RESUMEN

Several oncogenes induce untimely entry into S phase and alter replication timing and progression, thereby generating replicative stress, a well-known source of genomic instability and a hallmark of cancer. Using an epithelial model in Drosophila, we show that the RAS oncogene, which triggers G1/S transition, induces DNA damage and, at the same time, silences the DNA damage response pathway. RAS compromises ATR-mediated phosphorylation of the histone variant H2Av and ATR-mediated cell-cycle arrest in G2 and blocks, through ERK, Dp53-dependent induction of cell death. We found that ERK is also activated in normal tissues by an exogenous source of damage and that this activation is necessary to dampen the pro-apoptotic role of Dp53. We exploit the pro-survival role of ERK activation upon endogenous and exogenous sources of DNA damage to present evidence that its genetic or chemical inhibition can be used as a therapeutic opportunity to selectively eliminate RAS-malignant tissues.


Asunto(s)
Apoptosis/efectos de los fármacos , Daño del ADN/genética , Proteínas de Drosophila/metabolismo , Drosophila/genética , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Neoplasias del Ojo/terapia , Genes ras , Proteína p53 Supresora de Tumor/metabolismo , Animales , Animales Modificados Genéticamente , Apoptosis/genética , Apoptosis/efectos de la radiación , Caspasas , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Daño del ADN/efectos de los fármacos , Daño del ADN/efectos de la radiación , Drosophila/metabolismo , Drosophila/efectos de la radiación , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Neoplasias del Ojo/tratamiento farmacológico , Neoplasias del Ojo/genética , Neoplasias del Ojo/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de la radiación , Inestabilidad Genómica , Histonas/química , Histonas/metabolismo , Larva/genética , Larva/metabolismo , Larva/efectos de la radiación , Mutación , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Fase S/genética , Fase S/efectos de la radiación , Transducción de Señal , Proteína p53 Supresora de Tumor/genética
9.
Curr Biol ; 15(4): 334-9, 2005 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-15723794

RESUMEN

It is well established that DNA damage induces checkpoint-mediated interphase arrest in higher eukaryotes, but recent studies demonstrate that DNA damage delays entry into anaphase as well. Damaged DNA in syncytial and gastrulating Drosophila embryos delays the metaphase/anaphase transition . In human cultured cells, DNA damage also induces a delay in mitosis . However, the mechanism by which DNA damage delays the anaphase onset is controversial. Some studies implicate a DNA damage checkpoint , whereas other studies invoke a spindle checkpoint . To resolve this issue, we compared the effects of random DNA breaks induced by X-irradiation to site-specific I-CreI endonuclease-induced chromosome breaks on cell-cycle progression in wild-type and checkpoint-defective Drosophila neuroblasts. We found that both the BubR1 spindle checkpoint pathway and the Grp/Chk1 DNA damage checkpoint pathway are involved in delaying the metaphase/anaphase transition after extensive X-irradiation-induced DNA damage, whereas Grp/Chk1, but not BubR1, is required to delay anaphase onset in the presence of I-CreI-induced double-strand breaks. On the basis of these results, we propose that DNA damage in nonkinetochore regions produces a Grp/Chk1 DNA-damage-checkpoint-mediated delay in the metaphase/anaphase transition.


Asunto(s)
Anafase/fisiología , Daño del ADN/fisiología , Drosophila/crecimiento & desarrollo , Metafase/fisiología , Proteínas Quinasas/fisiología , Animales , Encéfalo/fisiología , Proteínas de Ciclo Celular , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Análisis Mutacional de ADN , Enzimas de Restricción del ADN , Drosophila/genética , Proteínas de Drosophila , Larva/fisiología , Neuronas/citología , Neuronas/fisiología , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas , Rayos X
10.
Curr Biol ; 14(15): 1341-7, 2004 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-15296750

RESUMEN

ATM is a large, multifunctional protein kinase that regulates responses required for surviving DNA damage: including DNA repair, apoptosis, and cell cycle checkpoints. Here, we show that Drosophila ATM function is essential for normal adult development. Extensive, inappropriate apoptosis occurs in proliferating atm mutant tissues, and in clonally derived atm mutant embryos, frequent mitotic defects were seen. At a cellular level, spontaneous telomere fusions and other chromosomal abnormalities are common in atm larval neuroblasts, suggesting a conserved and essential role for dATM in the maintenance of normal telomeres and chromosome stability. Evidence from other systems supports the idea that DNA double-strand break (DSB) repair functions of ATM kinases promote telomere maintenance by inhibition of illegitimate recombination or fusion events between the legitimate ends of chromosomes and spontaneous DSBs. Drosophila will be an excellent model system for investigating how these ATM-dependent chromosome structural maintenance functions are deployed during development. Because neurons appear to be particularly sensitive to loss of ATM in both flies and humans, this system should be particularly useful for identifying cell-specific factors that influence sensitivity to loss of dATM and are relevant for understanding the human disease, ataxia-telangiectasia.


Asunto(s)
Tipificación del Cuerpo/fisiología , Inestabilidad Cromosómica/fisiología , Reparación del ADN , Drosophila/crecimiento & desarrollo , Proteínas Serina-Treonina Quinasas/metabolismo , Telómero/fisiología , Animales , Apoptosis/fisiología , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular , Cruzamientos Genéticos , Proteínas de Unión al ADN , Drosophila/ultraestructura , Ojo/patología , Larva/crecimiento & desarrollo , Larva/ultraestructura , Locomoción/fisiología , Microscopía Electrónica , Mutagénesis , Mutación/genética , Neuronas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/fisiología , Recombinación Genética/fisiología , Temperatura , Transgenes/genética , Proteínas Supresoras de Tumor , Alas de Animales/patología
11.
Mol Biol Cell ; 15(2): 838-50, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14657248

RESUMEN

The early Drosophila embryo undergoes two distinct membrane invagination events believed to be mechanistically related to cytokinesis: metaphase furrow formation and cellularization. Both involve actin cytoskeleton rearrangements, and both have myosin II at or near the forming furrow. Actin and myosin are thought to provide the force driving membrane invagination; however, membrane addition is also important. We have examined the role of myosin during these events in living embryos, with a fully functional myosin regulatory light-chain-GFP chimera. We find that furrow invagination during metaphase and cellularization occurs even when myosin activity has been experimentally perturbed. In contrast, the basal closure of the cellularization furrows and the first cytokinesis after cellularization are highly dependent on myosin. Strikingly, when ingression of the cellularization furrow is experimentally inhibited by colchicine treatment, basal closure still occurs at the appropriate time, suggesting that it is regulated independently of earlier cellularization events. We have also identified a previously unrecognized reservoir of particulate myosin that is recruited basally into the invaginating furrow in a microfilament-independent and microtubule-dependent manner. We suggest that cellularization can be divided into two distinct processes: furrow ingression, driven by microtubule mediated vesicle delivery, and basal closure, which is mediated by actin/myosin based constriction.


Asunto(s)
Actinas/metabolismo , Citoesqueleto/metabolismo , Drosophila melanogaster/embriología , Fusión de Membrana/fisiología , Miosina Tipo II/metabolismo , Animales , División Celular/fisiología , Colchicina/farmacología , Citoesqueleto/efectos de los fármacos , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/metabolismo , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Proteínas Fluorescentes Verdes , Proteínas Luminiscentes/metabolismo , Fusión de Membrana/efectos de los fármacos , Microscopía Confocal
12.
Nat Commun ; 8(1): 326, 2017 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-28835609

RESUMEN

Chromatid segregation must be coordinated with cytokinesis to preserve genomic stability. Here we report that cells clear trailing chromatids from the cleavage site by undergoing two phases of cell elongation. The first phase relies on the assembly of a wide contractile ring. The second phase requires the activity of a pool of myosin that flows from the ring and enriches the nascent daughter cell cortices. This myosin efflux is a novel feature of cytokinesis and its duration is coupled to nuclear envelope reassembly and the nuclear sequestration of the Rho-GEF Pebble. Trailing chromatids induce a delay in nuclear envelope reassembly concomitant with prolonged cortical myosin activity, thus providing forces for the second elongation. We propose that the modulation of cortical myosin dynamics is part of the cellular response triggered by a "chromatid separation checkpoint" that delays nuclear envelope reassembly and, consequently, Pebble nuclear sequestration when trailing chromatids are present at the midzone.Chromatid segregation must be coordinated with cytokinesis to preserve genomic stability. Here the authors show that cells clear trailing chromatids from the cleavage site in a two-step cell elongation and demonstrate the role of myosin efflux in the second phase.


Asunto(s)
Procesos de Crecimiento Celular/genética , Segregación Cromosómica/genética , Citocinesis/genética , Miosinas/genética , Animales , Animales Modificados Genéticamente , Células Cultivadas , Cromátides/genética , Cromátides/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células Epiteliales/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Confocal , Miosinas/metabolismo , Transporte de Proteínas , Pupa/citología , Pupa/genética , Pupa/metabolismo , Imagen de Lapso de Tiempo/métodos
13.
Sci Rep ; 7: 40764, 2017 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-28112163

RESUMEN

Tau-mediated neurodegeneration in Alzheimer's disease and tauopathies is generally assumed to start in a normally developed brain. However, several lines of evidence suggest that impaired Tau isoform expression during development could affect mitosis and ploidy in post-mitotic differentiated tissue. Interestingly, the relative expression levels of Tau isoforms containing either 3 (3R-Tau) or 4 repeats (4R-Tau) play an important role both during brain development and neurodegeneration. Here, we used genetic and cellular tools to study the link between 3R and 4R-Tau isoform expression, mitotic progression in neuronal progenitors and post-mitotic neuronal survival. Our results illustrated that the severity of Tau-induced adult phenotypes depends on 4R-Tau isoform expression during development. As recently described, we observed a mitotic delay in 4R-Tau expressing cells of larval eye discs and brains. Live imaging revealed that the spindle undergoes a cycle of collapse and recovery before proceeding to anaphase. Furthermore, we found a high level of aneuploidy in post-mitotic differentiated tissue. Finally, we showed that overexpression of wild type and mutant 4R-Tau isoform in neuroblastoma SH-SY5Y cell lines is sufficient to induce monopolar spindles. Taken together, our results suggested that neurodegeneration could be in part linked to neuronal aneuploidy caused by 4R-Tau expression during brain development.


Asunto(s)
Aneuploidia , Regulación del Desarrollo de la Expresión Génica , Neuronas/metabolismo , Tauopatías/genética , Tauopatías/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Animales , Línea Celular , Supervivencia Celular/genética , Humanos , Mitosis/genética , Mutación , Células-Madre Neurales/metabolismo , Fenotipo , Células Fotorreceptoras/metabolismo , Isoformas de Proteínas , Tauopatías/patología
14.
J Cell Biol ; 211(3): 517-32, 2015 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-26553926

RESUMEN

The presence of DNA double-strand breaks during mitosis is particularly challenging for the cell, as it produces broken chromosomes lacking a centromere. This situation can cause genomic instability resulting from improper segregation of the broken fragments into daughter cells. We recently uncovered a process by which broken chromosomes are faithfully transmitted via the BubR1-dependent tethering of the two broken chromosome ends. However, the mechanisms underlying BubR1 recruitment and function on broken chromosomes were largely unknown. We show that BubR1 requires interaction with Bub3 to localize on the broken chromosome fragments and to mediate their proper segregation. We also find that Cdc20, a cofactor of the E3 ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C), accumulates on DNA breaks in a BubR1 KEN box-dependent manner. A biosensor for APC/C activity demonstrates a BubR1-dependent local inhibition of APC/C around the segregating broken chromosome. We therefore propose that the Bub3-BubR1 complex on broken DNA inhibits the APC/C locally via the sequestration of Cdc20, thus promoting proper transmission of broken chromosomes.


Asunto(s)
Proteínas Cdc20/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromosomas/genética , Dípteros/metabolismo , Proteínas de Drosophila/metabolismo , Anafase/genética , Ciclosoma-Complejo Promotor de la Anafase/genética , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Cromosomas/metabolismo , Roturas del ADN de Doble Cadena , Dípteros/genética , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Huso Acromático/genética , Huso Acromático/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
15.
Mol Biol Cell ; 26(13): 2519-34, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25947137

RESUMEN

The coupling of endocytosis and exocytosis underlies fundamental biological processes ranging from fertilization to neuronal activity and cellular polarity. However, the mechanisms governing the spatial organization of endocytosis and exocytosis require clarification. Using a quantitative imaging-based screen in budding yeast, we identified 89 mutants displaying defects in the localization of either one or both pathways. High-resolution single-vesicle tracking revealed that the endocytic and exocytic mutants she4∆ and bud6∆ alter post-Golgi vesicle dynamics in opposite ways. The endocytic and exocytic pathways display strong interdependence during polarity establishment while being more independent during polarity maintenance. Systems analysis identified the exocyst complex as a key network hub, rich in genetic interactions with endocytic and exocytic components. Exocyst mutants displayed altered endocytic and post-Golgi vesicle dynamics and interspersed endocytic and exocytic domains compared with control cells. These data are consistent with an important role for the exocyst in coordinating endocytosis and exocytosis.


Asunto(s)
Endocitosis/fisiología , Exocitosis/fisiología , Saccharomycetales/fisiología , Polaridad Celular/fisiología , Redes y Vías Metabólicas , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo
16.
J Cell Biol ; 199(5): 745-53, 2012 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-23185030

RESUMEN

Chromosome segregation must be coordinated with cell cleavage to ensure correct transmission of the genome to daughter cells. Here we identify a novel mechanism by which Drosophila melanogaster neuronal stem cells coordinate sister chromatid segregation with cleavage furrow ingression. Cells adapted to a dramatic increase in chromatid arm length by transiently elongating during anaphase/telophase. The degree of cell elongation correlated with the length of the trailing chromatid arms and was concomitant with a slight increase in spindle length and an enlargement of the zone of cortical myosin distribution. Rho guanine-nucleotide exchange factor (Pebble)-depleted cells failed to elongate during segregation of long chromatids. As a result, Pebble-depleted adult flies exhibited morphological defects likely caused by cell death during development. These studies reveal a novel pathway linking trailing chromatid arms and cortical myosin that ensures the clearance of chromatids from the cleavage plane at the appropriate time during cytokinesis, thus preserving genome integrity.


Asunto(s)
Adaptación Fisiológica , Forma de la Célula/fisiología , Cromátides/metabolismo , Segregación Cromosómica , Citocinesis , Drosophila melanogaster/citología , Células-Madre Neurales/citología , Animales , Drosophila melanogaster/genética , Miosinas/metabolismo
17.
Mol Biol Cell ; 23(17): 3336-47, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22767578

RESUMEN

Cyclin-dependent kinase 1 (Cdk1) is required for initiation and maintenance of polarized cell growth in budding yeast. Cdk1 activates Rho-family GTPases, which polarize the actin cytoskeleton for delivery of membrane to growth sites via the secretory pathway. Here we investigate whether Cdk1 plays additional roles in the initiation and maintenance of polarized cell growth. We find that inhibition of Cdk1 causes a cell surface growth defect that is as severe as that caused by actin depolymerization. However, unlike actin depolymerization, Cdk1 inhibition does not result in a massive accumulation of intracellular secretory vesicles or their cargoes. Analysis of post-Golgi vesicle dynamics after Cdk1 inhibition demonstrates that exocytic vesicles are rapidly mistargeted away from the growing bud, possibly to the endomembrane/vacuolar system. Inhibition of Cdk1 also causes defects in the organization of endocytic and exocytic zones at the site of growth. Cdk1 thus modulates membrane-trafficking dynamics, which is likely to play an important role in coordinating cell surface growth with cell cycle progression.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Citoesqueleto de Actina , Proteína Quinasa CDC2/antagonistas & inhibidores , Ciclo Celular , Aumento de la Célula , Membrana Celular , Polaridad Celular , Endocitosis , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores
18.
J Cell Biol ; 183(1): 63-75, 2008 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-18824564

RESUMEN

Entry into mitosis is characterized by a dramatic remodeling of nuclear and cytoplasmic compartments. These changes are driven by cyclin-dependent kinase 1 (CDK1) activity, yet how cytoplasmic and nuclear CDK1 activities are coordinated is unclear. We injected cyclin B (CycB) into Drosophila melanogaster embryos during interphase of syncytial cycles and monitored effects on cytoplasmic and nuclear mitotic events. In untreated embryos or embryos arrested in interphase with a protein synthesis inhibitor, injection of CycB accelerates nuclear envelope breakdown and mitotic remodeling of the cytoskeleton. Upon activation of the Grapes(checkpoint kinase 1) (Grp(Chk1))-dependent S-phase checkpoint, increased levels of CycB drives cytoplasmic but not nuclear mitotic events. Grp(Chk1) prevents nuclear CDK1 activation by delaying CycB nuclear accumulation through Wee1-dependent and independent mechanisms.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Núcleo Celular/metabolismo , Ciclina B/metabolismo , Proteínas Quinasas/metabolismo , Transporte Activo de Núcleo Celular/efectos de los fármacos , Animales , Afidicolina/farmacología , Proteína Quinasa CDC2/antagonistas & inhibidores , Ciclo Celular/efectos de los fármacos , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/genética , Núcleo Celular/efectos de los fármacos , División del Núcleo Celular/efectos de los fármacos , División del Núcleo Celular/fisiología , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Ciclina B/farmacología , Cicloheximida/farmacología , Citocinesis/efectos de los fármacos , Citocinesis/fisiología , Citoplasma/efectos de los fármacos , Citoplasma/metabolismo , Proteínas de Drosophila , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Cinetocoros/metabolismo , Mitosis/efectos de los fármacos , Mutación , Membrana Nuclear/efectos de los fármacos , Membrana Nuclear/fisiología , Proteínas Nucleares/genética , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/genética , Purinas/farmacología , Quinolinas/farmacología , Proteínas Recombinantes/farmacología , Roscovitina , Huso Acromático/efectos de los fármacos , Huso Acromático/fisiología , Tiazoles/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA