Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
BMC Plant Biol ; 23(1): 610, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38041043

RESUMEN

Common bean (Phaseolus vulgaris) is one of the legume crops most consumed worldwide and bean rust is one of the most severe foliar biotrophic fungal diseases impacting its production. In this work, we searched for new sources of rust resistance (Uromyces appendiculatus) in a representative collection of the Portuguese germplasm, known to have accessions with an admixed genetic background between Mesoamerican and Andean gene pools. We identified six accessions with incomplete hypersensitive resistance and 20 partially resistant accessions of Andean, Mesoamerican, and admixed origin. We detected 11 disease severity-associated single-nucleotide polymorphisms (SNPs) using a genome-wide association approach. Six of the associations were related to partial (incomplete non-hypersensitive) resistance and five to incomplete hypersensitive resistance, and the proportion of variance explained by each association varied from 4.7 to 25.2%. Bean rust severity values ranged from 0.2 to 49.1% and all the infection types were identified, reflecting the diversity of resistance mechanisms deployed by the Portuguese germplasm.The associations with U. appendiculatus partial resistance were located in chromosome Pv08, and with incomplete hypersensitive resistance in chromosomes Pv06, Pv07, and Pv08, suggesting an oligogenic inheritance of both types of resistance. A resolution to the gene level was achieved for eight of the associations. The candidate genes proposed included several resistance-associated enzymes, namely ß-amylase 7, acyl-CoA thioesterase, protein kinase, and aspartyl protease. Both SNPs and candidate genes here identified constitute promising genomics targets to develop functional molecular tools to support bean rust resistance precision breeding.


Asunto(s)
Phaseolus , Phaseolus/genética , Phaseolus/microbiología , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Genómica
2.
Phytopathology ; 113(5): 866-872, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37129265

RESUMEN

Powdery mildew on Lathyrus sativus (grass pea) is commonly caused by Erysiphe pisi, the causal agent of pea powdery mildew. E. trifolii could also pose an additional threat to grass pea, as it does to pea (Pisum sativum). In order to understand the potential threat and the availability of resistance sources, the response to both pathogens was analyzed on a worldwide germplasm collection of 189 grass pea accessions. Infection type and disease severity (DS) of grass pea accessions, independently inoculated with E. pisi and E. trifolii, were evaluated under controlled conditions. A wide range of responses were detected, with the previously uncharacterized partial resistance to E. trifolii in grass pea detected less frequently and uncorrelated with partial resistance against E. pisi. To test for the lack of correlation at the genetic level, an exploratory association mapping study was undertaken by statistically combining grass pea collection DS scores against both pathogens, with 5,651 previously screened genotype-by-sequencing-based single nucleotide polymorphisms (SNP). Mostly different genetic regions in grass pea were identified as being associated with the response to E. trifolii and E. pisi, anticipating an independent genetic basis that requires further validation in larger germplasm collections, with higher SNP densities. This study proposes common and unique partial resistance components against two different powdery mildews, implying the need for complementary approaches to introduce resistance to both pathogens into new grass pea varieties. The identified sources of resistance and predicted genomic targets will assist in breeding for resistance to multiple powdery mildews.


Asunto(s)
Ascomicetos , Lathyrus , Ascomicetos/fisiología , Lathyrus/genética , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Fitomejoramiento
3.
Plant Dis ; 107(10): 3113-3122, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37102726

RESUMEN

Common bean (Phaseolus vulgaris L.) is one of the most important food legumes worldwide, and its production is severely affected by fungal diseases such as powdery mildew. Portugal has a diverse germplasm, with accessions of Andean, Mesoamerican, and admixed origin, making it a valuable resource for common bean genetic studies. In this work, we evaluated the response of a Portuguese collection of 146 common bean accessions to Erysiphe diffusa infection, observing a wide range of disease severity and different levels of compatible and incompatible reactions, revealing the presence of different resistance mechanisms. We identified 11 incompletely hypersensitive resistant and 80 partially resistant accessions. We performed a genome-wide association study to clarify its genetic control, resulting in the identification of eight disease severity-associated single-nucleotide polymorphisms, spread across chromosomes Pv03, Pv09, and Pv10. Two of the associations were unique to partial resistance and one to incomplete hypersensitive resistance. The proportion of variance explained by each association varied between 15 and 86%. The absence of a major locus, together with the relatively small number of loci controlling disease severity, suggested an oligogenic inheritance of both types of resistance. Seven candidate genes were proposed, including a disease resistance protein (toll interleukin 1 receptor-nucleotide binding site-leucine-rich repeat class), an NF-Y transcription factor complex component, and an ABC-2 type transporter family protein. This work contributes with new resistance sources and genomic targets valuable to develop selection molecular tools and support powdery mildew resistance precision breeding in common bean.


Asunto(s)
Ascomicetos , Phaseolus , Mapeo Cromosómico/métodos , Phaseolus/genética , Phaseolus/microbiología , Portugal , Ascomicetos/fisiología , Estudio de Asociación del Genoma Completo , Fitomejoramiento
4.
Int J Mol Sci ; 24(3)2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36768792

RESUMEN

Peas (Pisum sativum) are the fourth most cultivated pulses worldwide and a critical source of protein in animal feed and human food. Developing pea core collections improves our understanding of pea evolution and may ease the exploitation of their genetic diversity in breeding programs. We carefully selected a highly diverse pea core collection of 325 accessions and established their genetic diversity and population structure. DArTSeq genotyping provided 35,790 polymorphic DArTseq markers, of which 24,279 were SilicoDArT and 11,511 SNP markers. More than 90% of these markers mapped onto the pea reference genome, with an average of 2787 SilicoDArT and 1644 SNP markers per chromosome, and an average LD50 distance of 0.48 and 1.38 Mbp, respectively. The pea core collection clustered in three or six subpopulations depending on the pea subspecies. Many admixed accessions were also detected, confirming the frequent genetic exchange between populations. Our results support the classification of Pisum genus into two species, P. fulvum and P. sativum (including subsp. sativum, arvense, elatius, humile, jomardii and abyssinicum). In addition, the study showed that wild alleles were incorporated into the cultivated pea through the intermediate P. sativum subsp. jomardii and P. sativum subsp. arvense during pea domestication, which have important implications for breeding programs. The high genetic diversity found in the collection and the high marker coverage are also expected to improve trait discovery and the efficient implementation of advanced breeding approaches.


Asunto(s)
Variación Genética , Pisum sativum , Animales , Humanos , Pisum sativum/genética , Fitomejoramiento , Fenotipo
5.
Int J Mol Sci ; 24(6)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36982189

RESUMEN

Fungal phytotoxins can be defined as secondary metabolites toxic to host plants and are believed to be involved in the symptoms developed of a number of plant diseases by targeting host cellular machineries or interfering with host immune responses. As any crop, legumes can be affected by a number of fungal diseases, causing severe yield losses worldwide. In this review, we report and discuss the isolation, chemical, and biological characterization of fungal phytotoxins produced by the most important necrotrophic fungi involved in legume diseases. Their possible role in plant-pathogen interaction and structure-toxicity relationship studies have also been reported and discussed. Moreover, multidisciplinary studies on other prominent biological activity conducted on reviewed phytotoxins are described. Finally, we explore the challenges in the identification of new fungal metabolites and their possible applications in future experiments.


Asunto(s)
Fabaceae , Toxinas Biológicas , Toxinas Biológicas/metabolismo , Plantas/metabolismo , Verduras , Hongos/metabolismo , Enfermedades de las Plantas/microbiología
6.
Theor Appl Genet ; 135(11): 3735-3756, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35182168

RESUMEN

Faba bean (Vicia faba) is a grain legume crop widely cultivated in temperate areas for food and feed. Its productivity can be constrained by numerous diseases and pests that can be managed by a number of strategies, complemented with the deployment of resistant cultivars in an integrated manner. Few sources of resistance are available to some of them, although their phenotypic expression is usually insufficiently described, and their genetic basis is largely unknown. A few DNA markers have been developed for resistance to rust, ascochyta blight, and broomrape, but not yet for other diseases or pests. Still, germplasm screenings are allowing the identification of resistances that are being accumulated by classical breeding, succeeding in the development of cultivars with moderate levels of resistance. The adoption of novel phenotyping approaches and the unprecedented development of genomic resources along with speed breeding tools are speeding up resistance characterization and effective use in faba bean breeding.


Asunto(s)
Vicia faba , Vicia faba/genética , Genómica
7.
Phytother Res ; 36(11): 4155-4166, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35781895

RESUMEN

"Desert hyacinths" are a remarkable group of parasitic plants belonging to genus Cistanche, including more than 20 accepted species typically occurring in deserts or coastal dunes parasitizing roots of shrubs. Several Cistanche species have long been a source of traditional herbal medicine or food, being C. deserticola and C. tubulosa the most used in China. This manuscript reports the isolation and identification of some phenylethanoid and iridoid glycosides, obtained from the hydroalcoholic extract of C. phelypaea collected in Spain. The present study aims to characterize the antioxidant activity of C. phelypaea metabolites in the light of their application in nutraceutical and cosmeceutical industries and the effect of acetoside, the most abundant metabolite in C. phelypaea extract, on human keratinocyte and pluripotent stem cell proliferation and differentiation. Our study demonstrated that acetoside, besides its strong antioxidant potential, can preserve the proliferative potential of human basal keratinocytes and the stemness of mesenchymal progenitors necessary for tissue morphogenesis and renewal. Therefore, acetoside can be of practical relevance for the clinical application of human stem cell cultures in tissue engineering and regenerative medicine.


Asunto(s)
Cistanche , Medicamentos Herbarios Chinos , Humanos , Cistanche/metabolismo , Glicósidos/farmacología , Iridoides , Antioxidantes/farmacología , Antioxidantes/metabolismo , Suplementos Dietéticos
8.
Sensors (Basel) ; 22(19)2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36236336

RESUMEN

Aphanomyces root rot (ARR) is a devastating disease that affects the production of pea. The plants are prone to infection at any growth stage, and there are no chemical or cultural controls. Thus, the development of resistant pea cultivars is important. Phenomics technologies to support the selection of resistant cultivars through phenotyping can be valuable. One such approach is to couple imaging technologies with deep learning algorithms that are considered efficient for the assessment of disease resistance across a large number of plant genotypes. In this study, the resistance to ARR was evaluated through a CNN-based assessment of pea root images. The proposed model, DeepARRNet, was designed to classify the pea root images into three classes based on ARR severity scores, namely, resistant, intermediate, and susceptible classes. The dataset consisted of 1581 pea root images with a skewed distribution. Hence, three effective data-balancing techniques were identified to solve the prevalent problem of unbalanced datasets. Random oversampling with image transformations, generative adversarial network (GAN)-based image synthesis, and loss function with class-weighted ratio were implemented during the training process. The result indicated that the classification F1-score was 0.92 ± 0.03 when GAN-synthesized images were added, 0.91 ± 0.04 for random resampling, and 0.88 ± 0.05 when class-weighted loss function was implemented, which was higher than when an unbalanced dataset without these techniques were used (0.83 ± 0.03). The systematic approaches evaluated in this study can be applied to other image-based phenotyping datasets, which can aid the development of deep-learning models with improved performance.


Asunto(s)
Aphanomyces , Aphanomyces/genética , Resistencia a la Enfermedad/genética , Genotipo , Pisum sativum
9.
Theor Appl Genet ; 134(3): 755-776, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33433637

RESUMEN

Pea (Pisum sativum L.), a cool-season legume crop grown in more than 85 countries, is the second most important grain legume and one of the major green vegetables in the world. While pea was historically studied as the genetic model leading to the discovery of the laws of genetics, pea research has lagged behind that of other major legumes in the genomics era, due to its large and complex genome. The evolving climate change and growing population have posed grand challenges to the objective of feeding the world, making it essential to invest research efforts to develop multi-omics resources and advanced breeding tools to support fast and continuous development of improved pea varieties. Recently, the pea researchers have achieved key milestones in omics and molecular breeding. The present review provides an overview of the recent important progress including the development of genetic resource databases, high-throughput genotyping assays, reference genome, genes/QTLs responsible for important traits, transcriptomic, proteomic, and phenomic atlases of various tissues under different conditions. These multi-faceted resources have enabled the successful implementation of various markers for monitoring early-generation populations as in marker-assisted backcrossing breeding programs. The emerging new breeding approaches such as CRISPR, speed breeding, and genomic selection are starting to change the paradigm of pea breeding. Collectively, the rich omics resources and omics-enable breeding approaches will enhance genetic gain in pea breeding and accelerate the release of novel pea varieties to meet the elevating demands on productivity and quality.


Asunto(s)
Genoma de Planta , Genómica/métodos , Pisum sativum/crecimiento & desarrollo , Fitomejoramiento , Proteómica/métodos , Sitios de Carácter Cuantitativo , Transcriptoma , Pisum sativum/genética , Pisum sativum/metabolismo
10.
Int J Mol Sci ; 22(6)2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33803699

RESUMEN

Leaf rust and powdery mildew are two important foliar diseases in wheat. A recombinant inbred line (RIL) population, obtained by crossing two bread wheat cultivars ('Victo' and 'Spada'), was evaluated for resistance to the two pathogens at seedling stage. Upon developing a genetic map of 8726 SNP loci, linkage analysis identified three resistance Quantitative Trait Loci (QTLs), with 'Victo' contributing the resistant alleles to all loci. One major QTL (QPm.gb-7A) was detected in response to Blumeria graminis on chromosome 7A, which explained 90% of phenotypic variation (PV). The co-positional relationship with known powdery mildew (Pm) resistance loci suggested that a new source of resistance was identified in T. aestivum. Two QTLs were detected in response to Puccinia triticina: a major gene on chromosome 5D (QLr.gb-5D), explaining a total PV of about 59%, and a minor QTL on chromosome 2B (QLr.gb-2B). A positional relationship was observed between the QLr.gb-5D with the known Lr1 gene, but polymorphisms were found between the cloned Lr1 and the corresponding 'Victo' allele, suggesting that QLr.gb-5D could represent a new functional Lr1 allele. Lastly, upon anchoring the QTL on the T. aestivum reference genome, candidate genes were hypothesized on the basis of gene annotation and in silico gene expression analysis.


Asunto(s)
Ascomicetos/fisiología , Resistencia a la Enfermedad/inmunología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología , Triticum/inmunología , Triticum/microbiología , Secuencia de Aminoácidos , Ascomicetos/aislamiento & purificación , Pan , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Simulación por Computador , Cruzamientos Genéticos , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Marcadores Genéticos , Fenotipo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Puccinia/aislamiento & purificación , Sitios de Carácter Cuantitativo/genética
11.
J Proteome Res ; 19(3): 1000-1012, 2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-32040328

RESUMEN

Peyronellaea pinodes causes Ascochyta blight, one of the major diseases in pea worldwide. Cultivated pea plants have a low resistance to this disease. Although quantitative trait loci (QTLs) involved in the resistance to Ascochyta blight have been identified, the specific genes associated with these QTLs remain unknown, which makes marker-assisted selection difficult. Complex traits alter proteins and their abundance. Quantitative estimation of proteins in pea might therefore be useful in selecting potential markers for breeding. In this work, we developed a strategy using a combination of shotgun proteomics (viz., high performance liquid chromatography-mass spectrometry data-dependent acquisition) and data-independent acquisition (DIA) analysis, to identify putative protein markers associated with resistance to Ascochyta blight and explored its use for breeding selection. For this purpose, an initial list of target peptides based on proteins closely related to resistance to P. pinodes was compiled by using two genotypes with contrasting responses to the disease. Then, targeted data analysis (viz., shotgun proteomics-DIA) was used for constitutive quantification of the target peptides in a representative number of the recombinant inbred line population segregated for resistance as derived from a cross between the two genotypes. Finally, a peptide panel of potential markers for resistance to P. pinodes was built. The results thus obtained are discussed and compared with those of previous gene expression studies using the same parental pea genotypes responding to the pathogen. Also, a molecular defense mechanism against Ascochyta blight in pea is proposed. To the authors' knowledge, this is the first time a targeted proteomics approach based on data analysis has been used to identify peptides associated with resistance to this disease.


Asunto(s)
Phoma , Pisum sativum , Pisum sativum/genética , Péptidos , Fitomejoramiento , Enfermedades de las Plantas/genética
12.
Phytopathology ; 110(3): 633-647, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31680652

RESUMEN

Common bean (Phaseolus vulgaris) is one of the most consumed legume crops in the world, and Fusarium wilt, caused by the fungus Fusarium oxysporum f. sp. phaseoli, is one of the major diseases affecting its production. Portugal holds a very promising common bean germplasm with an admixed genetic background that may reveal novel genetic resistance combinations between the original Andean and Mesoamerican gene pools. To identify new sources of Fusarium wilt resistance and detect resistance-associated single-nucleotide polymorphisms (SNPs), we explored, for the first time, a diverse collection of the underused Portuguese common bean germplasm by using genome-wide association analyses. The collection was evaluated for Fusarium wilt resistance under growth chamber conditions, with the highly virulent F. oxysporum f. sp. phaseoli strain FOP-SP1 race 6. Fourteen of the 162 Portuguese accessions evaluated were highly resistant and 71 intermediate. The same collection was genotyped with DNA sequencing arrays, and SNP-resistance associations were tested via a mixed linear model accounting for the genetic relatedness between accessions. The results from the association mapping revealed nine SNPs associated with resistance on chromosomes Pv04, Pv05, Pv07, and Pv08, indicating that Fusarium wilt resistance is under oligogenic control. Putative candidate genes related to phytoalexin biosynthesis, hypersensitive response, and plant primary metabolism were identified. The results reported here highlight the importance of exploring underused germplasm for new sources of resistance and provide new genomic targets for the development of functional markers to support selection in future disease resistance breeding programs.


Asunto(s)
Fusarium , Phaseolus , Resistencia a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Enfermedades de las Plantas , Portugal
13.
Plant Dis ; 104(11): 2875-2884, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32954987

RESUMEN

Powdery mildew infections are among the most severe foliar biotrophic fungal diseases in grain legumes. Several accessions of Lathyrus cicera (chickling pea) show levels of partial resistance to Erysiphe pisi, the causal agent of pea powdery mildew, and to E. trifolii, a powdery mildew pathogen recently confirmed to infect pea and Lathyrus spp. Nevertheless, the underlying L. cicera resistance mechanisms against powdery mildews are poorly understood. To unveil the genetic control of resistance against powdery mildews in L. cicera, a recombinant inbred line population segregating for response to both species was used in resistance linkage analysis. An improved L. cicera genetic linkage map was used in this analysis. The new higher-density linkage map contains 1,468 polymorphic loci mapped on seven major and two minor linkage groups, covering a total of 712.4 cM. The percentage of the leaf area affected by either E. pisi or E. trifolii was recorded in independent screenings of the recombinant inbred line population, identifying a continuous range of resistance-susceptibility responses. Distinct quantitative trait loci (QTLs) for partial resistance against each pathogen were identified, suggesting different genetic bases are involved in the response to E. pisi and E. trifolii in L. cicera. Moreover, through comparative mapping of L. cicera QTL regions with the pea reference genome, candidate genes and pathways involved in resistance against powdery mildews were identified. This study extended the previously available genetic and genomic tools in Lathyrus species, providing clues about diverse powdery mildew resistance mechanisms useful for future resistance breeding of L. cicera and related species.


Asunto(s)
Ascomicetos , Lathyrus , Mapeo Cromosómico , Lathyrus/genética , Enfermedades de las Plantas/genética , Sitios de Carácter Cuantitativo/genética
14.
Org Biomol Chem ; 15(31): 6500-6510, 2017 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-28745382

RESUMEN

Allelochemicals are safer, more selective and more active alternatives than synthetic agrochemicals for weed control. However, the low solubility of these compounds in aqueous media limits their use as agrochemicals. Herein, we propose the application of α-, ß- and γ-cyclodextrins to improve the physicochemical properties and biological activities of three sesquiterpene lactones: dehydrocostuslactone, costunolide and (-)-α-santonin. Complexation was achieved by kneading and coprecipitation methods. Aqueous solubility was increased in the range 100-4600% and the solubility-phase diagrams suggested that complex formation had been successful. The results of the PM3 semiempirical calculations were consistent with the experimental results. The activities on etiolated wheat coleoptiles, Standard Target Species and parasitic weeds were improved. Cyclodextrins preserved or enhanced the activity of the three sesquiterpene lactones. Free cyclodextrins did not show significant activity and therefore the enhancement in activity was due to complexation. These results are promising for applications in agrochemical design.


Asunto(s)
Ciclodextrinas/química , Lactonas/química , Malezas/efectos de los fármacos , Santonina/análogos & derivados , Sesquiterpenos/química , Ciclodextrinas/síntesis química , Ciclodextrinas/toxicidad , Lactonas/síntesis química , Lactonas/toxicidad , Modelos Moleculares , Santonina/síntesis química , Santonina/toxicidad , Sesquiterpenos/síntesis química , Sesquiterpenos/toxicidad , Solubilidad
15.
Proteomics ; 16(21): 2776-2787, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27539924

RESUMEN

Abiotic stresses caused by adverse environmental conditions are responsible for heavy economic losses on pea crop, being drought one of the most important abiotic constraints. Development of pea cultivars well adapted to dry conditions has been one of the major tasks in breeding programs. The increasing food requirements drive the necessity to broaden the molecular basis of tolerance to drought to develop pea cultivars well adapted to dry conditions. We have used a shotgun proteomic approach (nLC-MSMS) to study the tolerance to drought in three pea genotypes that were selected based on differences in the level of water deficit tolerance. Multivariate statistical analysis of data unraveled 367 significant differences of 700 identified when genotypes and/or treatment were compared. More than half of the significantly changed proteins belong to primary metabolism and protein regulation categories. We propose different mechanisms to cope drought in the genotypes studied. Maintenance of the primary metabolism and protein protection seems a strategy for drought tolerance. On the other hand susceptibility might be related to maintenance of the homeostatic equilibrium, a very energy consuming process. Data are available via ProteomeXchange with identifier PXD004587.


Asunto(s)
Pisum sativum/genética , Proteínas de Plantas/biosíntesis , Raíces de Plantas/genética , Proteómica , Sequías , Pisum sativum/crecimiento & desarrollo , Proteínas de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Estrés Fisiológico/genética
16.
Mol Genet Genomics ; 290(3): 785-806, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25416422

RESUMEN

Traits related to root architecture are of great importance for yield performance of crop species, although they remain poorly understood. The present study is aimed at identifying the genomic regions involved in the control of root morphological traits in durum wheat (Triticum durum Desf.). A set of 123 recombinant inbred lines derived from the durum wheat cross of cvs. 'Creso' × 'Pedroso' were grown hydroponically to two growth stages, and were phenotypically evaluated for a number of root traits. In addition, meta-(M)QTL analysis was performed that considered the results of other root traits studies in wheat, to compare with the 'Creso' × 'Pedroso' cross and to increase the QTL detection power. Eight quantitative trait loci (QTL) for traits related to root morphology were identified on chromosomes 1A, 1B, 2A, 3A, 6A and 6B in the 'Creso' × 'Pedroso' segregating population. Twenty-two MQTL that comprised from two to six individual QTL that had widely varying confidence intervals were found on 14 chromosomes. The data from the present study provide a detailed analysis of the genetic basis of morphological root traits in wheat. This study of the 'Creso' × 'Pedroso' durum-wheat population has revealed some QTL that had not been previously identified.


Asunto(s)
Mapeo Cromosómico , Raíces de Plantas/genética , Sitios de Carácter Cuantitativo/genética , Triticum/genética , Hidroponía , Endogamia , Fenotipo , Raíces de Plantas/anatomía & histología , Triticum/anatomía & histología
17.
Planta ; 242(5): 1095-106, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26059606

RESUMEN

MAIN CONCLUSION: Systemic acquired resistance elicitors, BTH and BABA, reduce rust penetration in pea through phytoalexins pathway but differing in their mode of action. It has been previously shown that rust (Uromyces pisi) infection can be reduced in pea (Pisum sativum) by exogenous applications of systemic acquired resistance elicitors such as BTH and BABA. This protection is known to be related with the induction of the phenolic pathway but the particular metabolites involved have not been determined yet. In this work, we tackled the changes induced in phytoalexin content by BTH and BABA treatments in the context of the resistance responses to pea rust. Detailed analysis through high-performance liquid chromatography (HPLC) showed qualitative and quantitative differences in the content, as well as in the distribution of phytoalexins. Thus, following BTH treatment, we observed an increase in scopoletin, pisatin and medicarpin contents in all, excreted, soluble and cell wall-bound fraction. This suggests fungal growth impairment by both direct toxic effect as well as plant cell wall reinforcement. The response mediated by BTH was genotype-dependent, since coumarin accumulation was observed only in the resistant genotype whereas treatment by BABA primed phytoalexin accumulation in both genotypes equally. Exogenous application to the leaves of scopoletin, medicarpin and pisatin lead to a reduction of the different fungal growth stages, confirming a role for these phytoalexins in BTH- and BABA-induced resistance against U. pisi hampering pre- and postpenetration fungal stages.


Asunto(s)
Aminobutiratos/farmacología , Basidiomycota/patogenicidad , Pisum sativum/metabolismo , Sesquiterpenos/metabolismo , Antifúngicos/farmacología , Basidiomycota/efectos de los fármacos , Pisum sativum/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Fitoalexinas
18.
Plant Cell Environ ; 38(7): 1434-52, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25533379

RESUMEN

Although a wealth of information is available on the induction of one or several drought-related responses in different species, little is known of how their timing, modulation and crucially integration influence drought tolerance. Based upon metabolomic changes in oat (Avena sativa L.), we have defined key processes involved in drought tolerance. During a time course of increasing water deficit, metabolites from leaf samples were profiled using direct infusion-electrospray mass spectroscopy (DI-ESI-MS) and high-performance liquid chromatography (HPLC) ESI-MS/MS and analysed using principal component analysis (PCA) and discriminant function analysis (DFA). The involvement of metabolite pathways was confirmed through targeted assays of key metabolites and physiological experiments. We demonstrate an early accumulation of salicylic acid (SA) influencing stomatal opening, photorespiration and antioxidant defences before any change in the relative water content. These changes are likely to maintain plant water status, with any photoinhibitory effect being counteracted by an efficient antioxidant capacity, thereby representing an integrated mechanism of drought tolerance in oats. We also discuss these changes in relation to those engaged at later points, consequence of the different water status in susceptible and resistant genotypes.


Asunto(s)
Antioxidantes/metabolismo , Avena/fisiología , Carbono/metabolismo , Metabolómica , Transducción de Señal , Avena/efectos de la radiación , Membrana Celular/metabolismo , Respiración de la Célula , Clorofila/metabolismo , Sequías , Glutatión/metabolismo , Glioxilatos/metabolismo , Luz , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Estomas de Plantas/fisiología , Estomas de Plantas/efectos de la radiación , Prolina/metabolismo , Ácido Salicílico/metabolismo , Agua/metabolismo
19.
Sensors (Basel) ; 15(2): 3988-4000, 2015 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-25671514

RESUMEN

Fusarium wilts are widespread diseases affecting most agricultural crops. In absence of efficient alternatives, sowing resistant cultivars is the preferred approach to control this disease. However, actual resistance sources are often overcome by new pathogenic races, forcing breeders to continuously search for novel resistance sources. Selection of resistant accessions, mainly based on the evaluation of symptoms at timely intervals, is highly time-consuming. Thus, we tested the potential of an infra-red imaging system in plant breeding to speed up this process. For this, we monitored the changes in surface leaf temperature upon infection by F. oxysporum f. sp. pisi in several pea accessions with contrasting response to Fusarium wilt under a controlled environment. Using a portable infra-red imaging system we detected a significant temperature increase of at least 0.5 °C after 10 days post-inoculation in the susceptible accessions, while the resistant accession temperature remained at control level. The increase in leaf temperature at 10 days post-inoculation was positively correlated with the AUDPC calculated over a 30 days period. Thus, this approach allowed the early discrimination between resistant and susceptible accessions. As such, applying infra-red imaging system in breeding for Fusarium wilt resistance would contribute to considerably shorten the process of selection of novel resistant sources.


Asunto(s)
Fusarium/patogenicidad , Pisum sativum/fisiología , Cruzamiento , Resistencia a la Enfermedad , Rayos Infrarrojos , Pisum sativum/genética , Pisum sativum/microbiología , Enfermedades de las Plantas , Hojas de la Planta/fisiología , Microbiología del Suelo
20.
BMC Plant Biol ; 14: 376, 2014 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-25522779

RESUMEN

BACKGROUND: Grass pea (Lathyrus sativus L.) is a valuable resource for potentially durable partial resistance to rust. To gain insight into the resistance mechanism and identify potential resistance genes, we generated the first comprehensive transcriptome assemblies from control and Uromyces pisi inoculated leafs of a susceptible and a partially rust-resistant grass pea genotype by RNA-seq. RESULTS: 134,914 contigs, shared by both libraries, were used to analyse their differential expression in response to rust infection. Functional annotation grouped 60.4% of the contigs present in plant databases (37.8% of total) to 33 main functional categories, being "protein", "RNA", "signalling", "transport" and "stress" the most represented. Transcription profiles revealed considerable differences in regulation of major phytohormone signalling pathways: whereas Salicylic and Abscisic Acid pathways were up-regulated in the resistant genotype, Jasmonate and Ethylene pathways were down-regulated in the susceptible one. As potential Resistance-genes we identified a mildew resistance locus O (MLO)-like gene, and MLO-related transcripts. Also, several pathogenesis-related genes were up-regulated in the resistant and exclusively down regulated in the susceptible genotype. Pathogen effectors identified in both inoculated libraries, as e.g. the rust Rtp1 transcript, may be responsible for the down-regulation of defence-related transcripts. The two genotypes contained 4,892 polymorphic contigs with SNPs unevenly distributed between different functional categories. Protein degradation (29.7%) and signalling receptor kinases (8.2%) were the most diverged, illustrating evolutionary adaptation of grass pea to the host/pathogens arms race. CONCLUSIONS: The vast array of novel, resistance-related genomic information we present here provides a highly valuable resource for future smart breeding approaches in this hitherto under-researched, valuable legume crop.


Asunto(s)
Resistencia a la Enfermedad/genética , Perfilación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Lathyrus/fisiología , Transcriptoma , Alelos , Basidiomycota/fisiología , Genotipo , Lathyrus/microbiología , Anotación de Secuencia Molecular , Enfermedades de las Plantas , Polimorfismo de Nucleótido Simple , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ARN , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA