Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Asunto principal
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Inherit Metab Dis ; 46(6): 1131-1138, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37776278

RESUMEN

Classic galactosemia (CG) and clinical variant galactosemia (CVG) are allelic inborn errors of metabolism that result from profound deficiency, and near-profound deficiency, respectively, of galactose-1-P uridylyltransferase (GALT). Despite early detection and lifelong dietary restriction of galactose, which is the current standard of care, most patients with CG/CVG grow to experience a range of long-term developmental and other complications. One of the less well-understood complications of CG/CVG is decreased hand grip strength, as reported by Potter et al. (2013). Here, we confirm this phenotype in an independent cohort of 36 cases (4-18 years) and 19 controls (4-17 years), and further demonstrate that the grip strength deficit observed in cases may be secondary to growth delay. Specifically, we found that when grip strength of cases and controls in a new cohort recruited in 2022 was plotted by weight, rather than age, the difference between cases and controls for both sexes disappeared. Reanalyzing data from the original 2013 cohort, we found that differences in weight accounted for grip strength differences between cases and controls in girls and young women, but not in boys and young men. Finally, we tested whether a GALT-null rat model of CG also showed a grip strength deficit-it did-and again the difference between GALT-null and wild-type rats associated with differences in body mass. Combined, these results confirm that GALT deficiency is associated with a grip strength deficit in both young patients with CG/CVG and GALT-null rats, and further demonstrate that this phenotype may be secondary to growth delay, and therefore not evidence of a muscle abnormality.


Asunto(s)
Galactosemias , Masculino , Humanos , Femenino , Animales , Ratas , Galactosemias/genética , Galactosemias/metabolismo , Galactosa/metabolismo , Fuerza de la Mano , UTP-Hexosa-1-Fosfato Uridililtransferasa/genética
2.
Front Med (Lausanne) ; 11: 1377186, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38799150

RESUMEN

The intricate interplay between the gut microbiota and ocular health has surpassed conventional medical beliefs, fundamentally reshaping our understanding of organ interconnectivity. This review investigates into the intricate relationship between gut microbiota-derived metabolites and their consequential impact on ocular health and disease pathogenesis. By examining the role of specific metabolites, such as short-chain fatty acids (SCFAs) like butyrate and bile acids (BAs), herein we elucidate their significant contributions to ocular pathologies, thought-provoking the traditional belief of organ sterility, particularly in the field of ophthalmology. Highlighting the dynamic nature of the gut microbiota and its profound influence on ocular health, this review underlines the necessity of comprehending the complex workings of the gut-eye axis, an emerging field of science ready for further exploration and scrutiny. While acknowledging the therapeutic promise in manipulating the gut microbiome and its metabolites, the available literature advocates for a targeted, precise approach. Instead of broad interventions, it emphasizes the potential of exploiting specific microbiome-related metabolites as a focused strategy. This targeted approach compared to a precision tool rather than a broad-spectrum solution, aims to explore the therapeutic applications of microbiome-related metabolites in the context of various retinal diseases. By proposing a nuanced strategy targeted at specific microbial metabolites, this review suggests that addressing specific deficiencies or imbalances through microbiome-related metabolites might yield expedited and pronounced outcomes in systemic health, extending to the eye. This focused strategy holds the potential in bypassing the irregularity associated with manipulating microbes themselves, paving a more efficient pathway toward desired outcomes in optimizing gut health and its implications for retinal diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA