Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Cell ; 169(6): 1029-1041.e16, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28575667

RESUMEN

We report a noninvasive strategy for electrically stimulating neurons at depth. By delivering to the brain multiple electric fields at frequencies too high to recruit neural firing, but which differ by a frequency within the dynamic range of neural firing, we can electrically stimulate neurons throughout a region where interference between the multiple fields results in a prominent electric field envelope modulated at the difference frequency. We validated this temporal interference (TI) concept via modeling and physics experiments, and verified that neurons in the living mouse brain could follow the electric field envelope. We demonstrate the utility of TI stimulation by stimulating neurons in the hippocampus of living mice without recruiting neurons of the overlying cortex. Finally, we show that by altering the currents delivered to a set of immobile electrodes, we can steerably evoke different motor patterns in living mice.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Estimulación Transcraneal de Corriente Directa/métodos , Animales , Estimulación Encefálica Profunda/efectos adversos , Estimulación Encefálica Profunda/instrumentación , Electrodos , Hipocampo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/fisiología , Estimulación Transcraneal de Corriente Directa/efectos adversos , Estimulación Transcraneal de Corriente Directa/instrumentación
2.
Cell ; 157(2): 486-498, 2014 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-24725413

RESUMEN

Cyclin-dependent kinase 5 regulates numerous neuronal functions with its activator, p35. Under neurotoxic conditions, p35 undergoes proteolytic cleavage to liberate p25, which has been implicated in various neurodegenerative diseases. Here, we show that p25 is generated following neuronal activity under physiological conditions in a GluN2B- and CaMKIIα-dependent manner. Moreover, we developed a knockin mouse model in which endogenous p35 is replaced with a calpain-resistant mutant p35 (Δp35KI) to prevent p25 generation. The Δp35KI mice exhibit impaired long-term depression and defective memory extinction, likely mediated through persistent GluA1 phosphorylation at Ser845. Finally, crossing the Δp35KI mice with the 5XFAD mouse model of Alzheimer's disease (AD) resulted in an amelioration of ß-amyloid (Aß)-induced synaptic depression and cognitive impairment. Together, these results reveal a physiological role of p25 production in synaptic plasticity and memory and provide new insights into the function of p25 in Aß-associated neurotoxicity and AD-like pathology.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Calpaína/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cognición , Quinasa 5 Dependiente de la Ciclina/metabolismo , Modelos Animales de Enfermedad , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Endocitosis , Técnicas de Sustitución del Gen , Hipocampo/metabolismo , Humanos , Potenciación a Largo Plazo , Depresión Sináptica a Largo Plazo , Ratones , Proteínas del Tejido Nervioso/genética , Fosfotransferasas , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis
3.
PLoS Biol ; 21(11): e3002386, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37983249

RESUMEN

Defensive responses to visually threatening stimuli represent an essential fear-related survival instinct, widely detected across species. The neural circuitry mediating visually triggered defensive responses has been delineated in the midbrain. However, the molecular mechanisms regulating the development and function of these circuits remain unresolved. Here, we show that midbrain-specific deletion of the transcription factor Brn3b causes a loss of neurons projecting to the lateral posterior nucleus of the thalamus. Brn3b deletion also down-regulates the expression of the neuropeptide tachykinin 2 (Tac2). Furthermore, Brn3b mutant mice display impaired defensive freezing responses to visual threat precipitated by social isolation. This behavioral phenotype could be ameliorated by overexpressing Tac2, suggesting that Tac2 acts downstream of Brn3b in regulating defensive responses to threat. Together, our experiments identify specific genetic components critical for the functional organization of midbrain fear-related visual circuits. Similar mechanisms may contribute to the development and function of additional long-range brain circuits underlying fear-associated behavior.


Asunto(s)
Miedo , Mesencéfalo , Animales , Ratones , Miedo/fisiología , Mesencéfalo/fisiología , Neuronas/fisiología , Tálamo
4.
Nature ; 562(7725): E1, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30046102

RESUMEN

Change history: In this Article, Extended Data Fig. 8 and Extended Data Table 1 contained errors, which have been corrected online.

5.
Development ; 146(14)2019 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-31332038

RESUMEN

Developmental control of long-range neuronal connections in the mammalian midbrain remains unclear. We explored the mechanisms regulating target selection of the developing superior colliculus (SC). The SC is a midbrain center that directs orienting behaviors and defense responses. We discovered that a transcription factor, Rorß, controls establishment of axonal projections from the SC to two thalamic nuclei: the dorsal lateral geniculate nucleus (dLGN) and the lateral posterior nucleus (LP). A genetic strategy used to visualize SC circuits revealed that in control animals Rorß+ neurons abundantly innervate the dLGN but barely innervate the LP. The opposite phenotype was observed in global and conditional Rorb mutants: projections to the dLGN were strongly decreased, and projections to the LP were increased. Furthermore, overexpression of Rorb in the wild type showed increased projections to the dLGN and decreased projections to the LP. In summary, we identified Rorß as a key developmental mediator of colliculo-thalamic innervation. Such regulation could represent a general mechanism orchestrating long-range neuronal connections in the mammalian brain.


Asunto(s)
Axones/fisiología , Mesencéfalo/embriología , Mesencéfalo/crecimiento & desarrollo , Neuronas/metabolismo , Miembro 2 del Grupo F de la Subfamilia 1 de Receptores Nucleares/fisiología , Vías Visuales/metabolismo , Animales , Animales Recién Nacidos , Embrión de Mamíferos , Femenino , Cuerpos Geniculados/fisiología , Células HEK293 , Humanos , Masculino , Mesencéfalo/citología , Ratones , Ratones Transgénicos , Miembro 2 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 2 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Embarazo , Colículos Superiores/fisiología
6.
Nature ; 540(7632): 230-235, 2016 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-27929004

RESUMEN

Changes in gamma oscillations (20-50 Hz) have been observed in several neurological disorders. However, the relationship between gamma oscillations and cellular pathologies is unclear. Here we show reduced, behaviourally driven gamma oscillations before the onset of plaque formation or cognitive decline in a mouse model of Alzheimer's disease. Optogenetically driving fast-spiking parvalbumin-positive (FS-PV)-interneurons at gamma (40 Hz), but not other frequencies, reduces levels of amyloid-ß (Aß)1-40 and Aß 1-42 isoforms. Gene expression profiling revealed induction of genes associated with morphological transformation of microglia, and histological analysis confirmed increased microglia co-localization with Aß. Subsequently, we designed a non-invasive 40 Hz light-flickering regime that reduced Aß1-40 and Aß1-42 levels in the visual cortex of pre-depositing mice and mitigated plaque load in aged, depositing mice. Our findings uncover a previously unappreciated function of gamma rhythms in recruiting both neuronal and glial responses to attenuate Alzheimer's-disease-associated pathology.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Amiloide/metabolismo , Ritmo Gamma , Microglía/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/prevención & control , Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/metabolismo , Animales , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/metabolismo , Forma de la Célula/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Ritmo Gamma/efectos de la radiación , Interneuronas/metabolismo , Interneuronas/efectos de la radiación , Luz , Masculino , Ratones , Microglía/citología , Microglía/efectos de la radiación , Optogenética , Parvalbúminas/metabolismo , Fragmentos de Péptidos/metabolismo , Placa Amiloide/terapia , Transcriptoma , Corteza Visual/fisiología , Corteza Visual/efectos de la radiación
7.
Proc Natl Acad Sci U S A ; 112(23): 7291-6, 2015 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-25995364

RESUMEN

Repeated stress has been suggested to underlie learning and memory deficits via the basolateral amygdala (BLA) and the hippocampus; however, the functional contribution of BLA inputs to the hippocampus and their molecular repercussions are not well understood. Here we show that repeated stress is accompanied by generation of the Cdk5 (cyclin-dependent kinase 5)-activator p25, up-regulation and phosphorylation of glucocorticoid receptors, increased HDAC2 expression, and reduced expression of memory-related genes in the hippocampus. A combination of optogenetic and pharmacosynthetic approaches shows that BLA activation is both necessary and sufficient for stress-associated molecular changes and memory impairments. Furthermore, we show that this effect relies on direct glutamatergic projections from the BLA to the dorsal hippocampus. Finally, we show that p25 generation is necessary for the stress-induced memory dysfunction. Taken together, our data provide a neural circuit model for stress-induced hippocampal memory deficits through BLA activity-dependent p25 generation.


Asunto(s)
Complejo Nuclear Basolateral/fisiopatología , Quinasa 5 Dependiente de la Ciclina/metabolismo , Hipocampo/fisiopatología , Discapacidades para el Aprendizaje/fisiopatología , Trastornos de la Memoria/fisiopatología , Animales , Complejo Nuclear Basolateral/efectos de la radiación , Hipocampo/efectos de la radiación , Luz , Ratones , Estrés Fisiológico
8.
BMC Biol ; 14: 40, 2016 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-27197636

RESUMEN

The mechanism of memory remains one of the great unsolved problems of biology. Grappling with the question more than a hundred years ago, the German zoologist Richard Semon formulated the concept of the engram, lasting connections in the brain that result from simultaneous "excitations", whose precise physical nature and consequences were out of reach of the biology of his day. Neuroscientists now have the knowledge and tools to tackle this question, however, and this Forum brings together leading contemporary views on the mechanisms of memory and what the engram means today.


Asunto(s)
Encéfalo/fisiología , Memoria/fisiología , Animales , Epigenómica , Hipocampo/fisiología , Humanos , Modelos Animales , Neuronas/fisiología , Columna Vertebral/fisiología , Sinapsis/fisiología
9.
J Neurosci ; 35(6): 2372-83, 2015 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-25673832

RESUMEN

Perturbations in fast-spiking parvalbumin (PV) interneurons are hypothesized to be a major component of various neuropsychiatric disorders; however, the mechanisms regulating PV interneurons remain mostly unknown. Recently, cyclin-dependent kinase 5 (Cdk5) has been shown to function as a major regulator of synaptic plasticity. Here, we demonstrate that genetic ablation of Cdk5 in PV interneurons in mouse brain leads to an increase in GABAergic neurotransmission and impaired synaptic plasticity. PVCre;fCdk5 mice display a range of behavioral abnormalities, including decreased anxiety and memory impairment. Our results reveal a central role of Cdk5 expressed in PV interneurons in gating inhibitory neurotransmission and underscore the importance of such regulation during behavioral tasks. Our findings suggest that Cdk5 can be considered a promising therapeutic target in a variety of conditions attributed to inhibitory interneuronal dysfunction, such as epilepsy, anxiety disorders, and schizophrenia.


Asunto(s)
Ansiedad/psicología , Quinasa 5 Dependiente de la Ciclina/genética , Inhibición Psicológica , Interneuronas/metabolismo , Trastornos de la Memoria/psicología , Parvalbúminas/metabolismo , Animales , Ansiedad/genética , Conducta Animal/fisiología , Interneuronas/enzimología , Aprendizaje por Laberinto/fisiología , Trastornos de la Memoria/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/genética , Actividad Motora/fisiología , Transmisión Sináptica/genética , Transmisión Sináptica/fisiología , Vesículas Sinápticas/ultraestructura , Ácido gamma-Aminobutírico/metabolismo
10.
Trends Neurosci ; 47(4): 239-240, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38514350

RESUMEN

A recent study by Cheung, Pauler, Koppensteiner et al. combining lineage tracing with single-cell RNA sequencing (scRNA-seq) has revealed unexpected features of the developing superior colliculus (SC). Extremely multipotent individual progenitors generate all types of SC neurons and glial cells that were found to localize in a non-predetermined pattern, demonstrating a remarkable degree of unpredictability in SC development.


Asunto(s)
Neuronas , Colículos Superiores , Humanos , Colículos Superiores/fisiología , Neuronas/fisiología , Neuroglía , Neurogénesis
11.
Neurobiol Learn Mem ; 105: 54-62, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23850563

RESUMEN

Cyclin-dependent kinase 5 (Cdk5) is associated with synaptic plasticity and cognitive function. Previous reports have demonstrated that Cdk5 is necessary for memory formation, although others have reported Cdk5 conditional knockout mouse models exhibiting enhanced learning and memory. Furthermore, how Cdk5 acts in specific cell populations to affect behavior and cognitive outcomes remains unclear. Here we conduct a behavioral characterization of a forebrain-specific Cdk5 conditional knockout mouse model under the αCaMKII promoter, in which Cdk5 is ablated in excitatory pyramidal neurons of the forebrain. The Cdk5 conditional knockouts exhibit hyperactivity in the open field, reduced anxiety, and reduced behavioral despair. Moreover, the Cdk5 conditional knockouts also display impaired spatial learning in the Morris water maze and are severely impaired in contextual fear memory, which correspond to deficits in synaptic transmission. Remarkably, the hyperactivity of the Cdk5 conditional knockouts can be ameliorated by the administration of lithium chloride, an inhibitor of GSK3ß signaling. Collectively, our data reveal that Cdk5 ablation from forebrain excitatory neurons results in deleterious effects on emotional and cognitive behavior and highlight a key role for Cdk5 in regulating the GSK3ß signaling pathway.


Asunto(s)
Cognición , Quinasa 5 Dependiente de la Ciclina/metabolismo , Hipercinesia/metabolismo , Prosencéfalo/metabolismo , Células Piramidales/metabolismo , Animales , Quinasa 5 Dependiente de la Ciclina/genética , Técnicas de Inactivación de Genes , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
12.
Elife ; 52016 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-28001126

RESUMEN

The SNARE-mediated vesicular transport pathway plays major roles in synaptic remodeling associated with formation of long-term memories, but the mechanisms that regulate this pathway during memory acquisition are not fully understood. Here we identify miRNAs that are up-regulated in the rodent hippocampus upon contextual fear-conditioning and identify the vesicular transport and synaptogenesis pathways as the major targets of the fear-induced miRNAs. We demonstrate that miR-153, a member of this group, inhibits the expression of key components of the vesicular transport machinery, and down-regulates Glutamate receptor A1 trafficking and neurotransmitter release. MiR-153 expression is specifically induced during LTP induction in hippocampal slices and its knockdown in the hippocampus of adult mice results in enhanced fear memory. Our results suggest that miR-153, and possibly other fear-induced miRNAs, act as components of a negative feedback loop that blocks neuronal hyperactivity at least partly through the inhibition of the vesicular transport pathway.


Asunto(s)
Miedo , Retroalimentación Fisiológica , Hipocampo/fisiología , Memoria , MicroARNs/metabolismo , Neuronas/fisiología , Vesículas Sinápticas/metabolismo , Animales , Ratones , Neurotransmisores/metabolismo , Receptores de Glutamato/metabolismo
13.
Nat Neurosci ; 18(7): 1008-16, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26005852

RESUMEN

Noncoding variants in the human MIR137 gene locus increase schizophrenia risk with genome-wide significance. However, the functional consequence of these risk alleles is unknown. Here we examined induced human neurons harboring the minor alleles of four disease-associated single nucleotide polymorphisms in MIR137. We observed increased MIR137 levels compared to those in major allele-carrying cells. microRNA-137 gain of function caused downregulation of the presynaptic target genes complexin-1 (Cplx1), Nsf and synaptotagmin-1 (Syt1), leading to impaired vesicle release. In vivo, miR-137 gain of function resulted in changes in synaptic vesicle pool distribution, impaired induction of mossy fiber long-term potentiation and deficits in hippocampus-dependent learning and memory. By sequestering endogenous miR-137, we were able to ameliorate the synaptic phenotypes. Moreover, reinstatement of Syt1 expression partially restored synaptic plasticity, demonstrating the importance of Syt1 as a miR-137 target. Our data provide new insight into the mechanism by which miR-137 dysregulation can impair synaptic plasticity in the hippocampus.


Asunto(s)
Regulación de la Expresión Génica/genética , MicroARNs/metabolismo , Fibras Musgosas del Hipocampo/metabolismo , Plasticidad Neuronal/genética , Esquizofrenia/genética , Vesículas Sinápticas/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Alelos , Animales , Conducta Animal/fisiología , Modelos Animales de Enfermedad , Fibroblastos , Sitios Genéticos , Células HEK293 , Humanos , Aprendizaje/fisiología , Potenciación a Largo Plazo , Ratones , Ratones Endogámicos C57BL , Proteínas Sensibles a N-Etilmaleimida/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Polimorfismo de Nucleótido Simple , Sinaptotagmina I/metabolismo
14.
Neuropharmacology ; 80: 70-82, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24495398

RESUMEN

Epigenetic regulation has been long considered to be a critical mechanism in the control of key aspects of cellular functions such as cell division, growth, and cell fate determination. Exciting recent developments have demonstrated that epigenetic mechanisms can also play necessary roles in the nervous system by regulating, for example, neuronal gene expression, DNA damage, and genome stability. Despite the fact that postmitotic neurons are developmentally less active then dividing cells, epigenetic regulation appears to provide means of both long-lasting and very dynamic regulation of neuronal function. Growing evidence indicates that epigenetic mechanisms in the central nervous system (CNS) are important for regulating not only specific aspects of individual neuronal metabolism but also for maintaining function of neuronal circuits and regulating their behavioral outputs. Multiple reports demonstrated that higher-level cognitive behaviors, such as learning and memory, are subject to a sophisticated epigenetic control, which includes interplay between multiple mechanisms of neuronal chromatin modification. Experiments with animal models have demonstrated that various epigenetic manipulations can affect cognition in different ways, from severe dysfunction to substantial improvement. In humans, epigenetic dysregulation has been known to underlie a number of disorders that are accompanied by mental impairment. Here, we review some of the epigenetic mechanisms that regulate cognition and how their disruption may contribute to cognitive dysfunctions. Due to the fact that histone acetylation and DNA methylation are some of the best-studied and critically important epigenomic modifications our research team has particularly strong expertise in, in this review, we are going to concentrate on histone acetylation, as well as DNA methylation/hydroxymethylation, in the mammalian CNS. Additional epigenetic modifications, not surveyed here, are being discussed in depth in the other review articles in this issue of Neuropharmacology.


Asunto(s)
Sistema Nervioso Central/metabolismo , Trastornos del Conocimiento/metabolismo , Cognición , Epigénesis Genética , Modelos Biológicos , Neuronas/metabolismo , 5-Metilcitosina/análogos & derivados , Acetilación , Animales , Sistema Nervioso Central/enzimología , Trastornos del Conocimiento/enzimología , Trastornos del Conocimiento/etiología , Citosina/análogos & derivados , Citosina/metabolismo , Metilación de ADN , Regulación de la Expresión Génica , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Humanos , Aprendizaje , Memoria , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/enzimología , Procesamiento Proteico-Postraduccional , Síndrome de Rett/enzimología , Síndrome de Rett/metabolismo , Síndrome de Rett/fisiopatología , Síndrome de Rubinstein-Taybi/enzimología , Síndrome de Rubinstein-Taybi/metabolismo , Síndrome de Rubinstein-Taybi/fisiopatología
15.
Neuron ; 79(6): 1109-1122, 2013 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-24050401

RESUMEN

The ten-eleven translocation (Tet) family of methylcytosine dioxygenases catalyze oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) and promote DNA demethylation. Despite the abundance of 5hmC and Tet proteins in the brain, little is known about the functions of the neuronal Tet enzymes. Here, we analyzed Tet1 knockout mice (Tet1KO) and found downregulation of multiple neuronal activity-regulated genes, including Npas4, c-Fos, and Arc. Furthermore, Tet1KO animals exhibited abnormal hippocampal long-term depression and impaired memory extinction. Analysis of the key regulatory gene, Npas4, indicated that its promoter region, containing multiple CpG dinucleotides, is hypermethylated in both naive Tet1KO mice and after extinction training. Such hypermethylation may account for the diminished expression of Npas4 itself and its downstream targets, impairing transcriptional programs underlying cognitive processes. In summary, we show that neuronal Tet1 regulates normal DNA methylation levels, expression of activity-regulated genes, synaptic plasticity, and memory extinction.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Extinción Psicológica/fisiología , Regulación de la Expresión Génica/genética , Neuronas/fisiología , Proteínas Proto-Oncogénicas/fisiología , Factores de Edad , Análisis de Varianza , Animales , Ansiedad/genética , Ansiedad/fisiopatología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Corteza Cerebral/citología , Condicionamiento Clásico/fisiología , Proteínas de Unión al ADN/deficiencia , Depresión/genética , Depresión/metabolismo , Modelos Animales de Enfermedad , Conducta Exploratoria/fisiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo/citología , Técnicas In Vitro , Locomoción/genética , Depresión Sináptica a Largo Plazo/genética , Masculino , Aprendizaje por Laberinto , Metoxihidroxifenilglicol/análogos & derivados , Metoxihidroxifenilglicol/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas Proto-Oncogénicas/deficiencia , Proteínas Proto-Oncogénicas c-fos/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/genética , Sinapsinas/metabolismo
16.
Neuron ; 75(4): 675-87, 2012 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-22920258

RESUMEN

N-type voltage-gated calcium channels localize to presynaptic nerve terminals and mediate key events including synaptogenesis and neurotransmission. While several kinases have been implicated in the modulation of calcium channels, their impact on presynaptic functions remains unclear. Here we report that the N-type calcium channel is a substrate for cyclin-dependent kinase 5 (Cdk5). The pore-forming α(1) subunit of the N-type calcium channel is phosphorylated in the C-terminal domain, and phosphorylation results in enhanced calcium influx due to increased channel open probability. Phosphorylation of the N-type calcium channel by Cdk5 facilitates neurotransmitter release and alters presynaptic plasticity by increasing the number of docked vesicles at the synaptic cleft. These effects are mediated by an altered interaction between N-type calcium channels and RIM1, which tethers presynaptic calcium channels to the active zone. Collectively, our results highlight a molecular mechanism by which N-type calcium channels are regulated by Cdk5 to affect presynaptic function.


Asunto(s)
Canales de Calcio Tipo N/fisiología , Quinasa 5 Dependiente de la Ciclina/metabolismo , Activación del Canal Iónico/fisiología , Neuronas/citología , Fosfotransferasas/metabolismo , Terminales Presinápticos/fisiología , Amiodarona , Análisis de Varianza , Animales , Biofisica , Biotinilación , Canales de Calcio Tipo N/genética , Células Cultivadas , Corteza Cerebral/citología , Quinasa 5 Dependiente de la Ciclina/genética , Estimulación Eléctrica , Embrión de Mamíferos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Regulación de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Hipocampo/citología , Humanos , Inmunoprecipitación , Técnicas In Vitro , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Modelos Moleculares , Mutación/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Neuronas/fisiología , Neuronas/ultraestructura , Técnicas de Placa-Clamp , Fosforilación , Fosfotransferasas/genética , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/ultraestructura , Radioinmunoensayo , Análisis de Secuencia de Proteína
17.
Nat Neurosci ; 19(9): 1190-1, 2016 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-27571198
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA