Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Bioconjug Chem ; 29(6): 2021-2027, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29733594

RESUMEN

Serotonin (5-HT) modulates key aspects of the immune system. However, its precise function and the receptors involved in the observed effects have remained elusive. Among the different serotonin receptors, 5-HT1A plays an important role in the immune system given its presence in cells involved in both the innate and adaptive immune responses, but its actual levels of expression under different conditions have not been comprehensively studied due to the lack of suitable tools. To further clarify the role of 5-HT1A receptor in the immune system, we have developed a fluorescent small molecule probe that enables the direct study of the receptor levels in native cells. This probe allows direct profiling of the receptor expression in immune cells using flow cytometry. Our results show that important subsets of immune cells including human monocytes and dendritic cells express functional 5-HT1A and that its activation is associated with anti-inflammatory signaling. Furthermore, application of the probe to the experimental autoimmune encephalomyelitis model of multiple sclerosis demonstrates its potential to detect the specific overexpression of the 5-HT1A receptor in CD4+ T cells. Accordingly, the probe reported herein represents a useful tool whose use can be extended to study the levels of 5-HT1A receptor in ex vivo samples of different immune system conditions.


Asunto(s)
Compuestos de Boro/química , Citometría de Flujo/métodos , Colorantes Fluorescentes/química , Receptor de Serotonina 5-HT1A/análisis , Animales , Compuestos de Boro/síntesis química , Técnicas de Química Sintética , Células Dendríticas/química , Colorantes Fluorescentes/síntesis química , Humanos , Leucocitos Mononucleares/patología , Ratones , Monocitos/química , Esclerosis Múltiple/patología , Linfocitos T/química
2.
Bioconjug Chem ; 29(2): 382-389, 2018 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-29314831

RESUMEN

The human endogenous cannabinoid system (ECS) regulates key physiological processes and alterations in its signaling pathways, and endocannabinoid levels are associated with diseases such as neurological and neuropsychiatric conditions, cancer, pain and inflammation, obesity, and metabolic and different immune related disorders. Immune system cells express the G-protein coupled cannabinoid receptor 1 (CB1), but its functional role has not been fully understood, likely due to the lack of appropriate tools. The availability of novel tools to investigate the role of CB1 in immune regulation might contribute to identify CB1 as a potential novel therapeutic target or biomarker for many diseases. Herein, we report the development and validation of the first fluorescent small molecule probe to directly visualize and quantify CB1 in blood and tonsil immune cells by flow cytometry and confocal microscopy. We coupled the cannabinoid agonist HU210 to the fluorescent tag Alexa Fluor 488, generating a fluorescent probe with high affinity for CB1 and selectivity over CB2. We validate HU210-Alexa488 for the rapid, simultaneous, and reproducible identification of CB1 in human monocytes, T cells, and B cells by multiplexed flow cytometry. This probe is also suitable for the direct visualization of CB1 in tonsil tissues, allowing the in vivo identification of tonsil CB1-expressing T and B cells. This study provides the first fluorescent chemical tool to investigate CB1 expression and function in human blood and tonsil immune cells, which might well pave the way to unravel essential features of CB1 in different immune and ECS-related diseases.


Asunto(s)
Dronabinol/análogos & derivados , Citometría de Flujo/métodos , Colorantes Fluorescentes/química , Hidrazinas/química , Tonsila Palatina/citología , Receptor Cannabinoide CB1/análisis , Receptor Cannabinoide CB1/sangre , Linfocitos B/química , Linfocitos B/citología , Dronabinol/química , Células HEK293 , Humanos , Tonsila Palatina/química , Receptor Cannabinoide CB1/agonistas , Linfocitos T/química , Linfocitos T/citología
3.
Chemistry ; 22(4): 1313-21, 2016 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-26560738

RESUMEN

Determination of the targets of a compound remains an essential aspect in drug discovery. A complete understanding of all binding interactions is critical to recognize in advance both therapeutic effects and undesired consequences. However, the complete polypharmacology of many drugs currently in clinical development is still unknown, especially in the case of G protein-coupled receptor (GPCR) ligands. In this work we have developed a chemoproteomic platform based on the use of chemical probes to explore the target profile of a compound in biological systems. As proof of concept, this methodology has been applied to selected ligands of the therapeutically relevant serotonin 5-HT1A and 5-HT6 receptors, and we have identified and validated some of their off-targets. This approach could be extended to other drugs of interest to study the targeted proteome in disease-relevant systems.


Asunto(s)
Receptor de Serotonina 5-HT1A/química , Receptores Acoplados a Proteínas G/química , Receptores de Serotonina/química , Diseño de Fármacos , Descubrimiento de Drogas , Humanos , Ligandos , Receptor de Serotonina 5-HT1A/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Serotonina/metabolismo
4.
Dis Model Mech ; 16(2)2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36715290

RESUMEN

Phenotypic cell-based screens are critical tools for discovering candidate drugs for development, yet identification of the cellular target and mode of action of a candidate drug is often lacking. Using an imaging-based screen, we recently discovered an N-[(4-hydroxychroman-4-yl)methyl]-sulphonamide (N-4HCS) compound, DDD01035881, that blocks male gamete formation in the malaria parasite life cycle and subsequent transmission of the parasite to the mosquito with nanomolar activity. To identify the target(s) of DDD01035881, and of the N-4HCS class of compounds more broadly, we synthesised a photoactivatable derivative, probe 2. Photoaffinity labelling of probe 2 coupled with mass spectrometry identified the 16 kDa Plasmodium falciparum parasitophorous vacuole membrane protein Pfs16 as a potential parasite target. Complementary methods including cellular thermal shift assays confirmed that the parent molecule DDD01035881 stabilised Pfs16 in lysates from activated mature gametocytes. Combined with high-resolution, fluorescence and electron microscopy data, which demonstrated that parasites inhibited with N-4HCS compounds phenocopy the targeted deletion of Pfs16 in gametocytes, these data implicate Pfs16 as a likely target of DDD01035881. This finding establishes N-4HCS compounds as being flexible and effective starting candidates from which transmission-blocking antimalarials can be developed in the future.


Asunto(s)
Malaria , Plasmodium , Animales , Masculino , Proteínas de la Membrana/metabolismo , Vacuolas/metabolismo , Sulfonamidas/farmacología , Sulfonamidas/uso terapéutico , Sulfonamidas/metabolismo
5.
Chemistry ; 18(52): 16884-9, 2012 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-23132701

RESUMEN

A new molecular receptor (1) for ammonium recognition has been designed and constructed by using only carbon atoms. This molecular receptor can co-exist in two different isoenergetic conformations but, upon complexation, the conformers are no longer isoenergetic, and a basket-shaped conformation becomes clearly more stable. The pre-organised tetrahedral structure of this basket-shaped molecule favours the complexation of ammonium ions by N-H⋅⋅⋅π interactions with the four phenyl groups of the host. A similar behaviour is not observed in a similar, but less pre-organised, reference molecule. ESI-MS competition experiments show that 1 is able to bind NH(4)(+) over K(+) selectively. This is the first example of a neutral molecular receptor that shows a remarkable NH(4)(+)/K(+) selectivity. DFT-calculations provide insight into the nature of host-guest interactions of both 1⋅NH(4)(+) and 1⋅K(+) complexes as well as in the mechanism involved in multiple cation-π interactions and the influence of these interactions on the conformational stability and the selective binding of the host.


Asunto(s)
Potasio/química , Compuestos de Amonio Cuaternario/química , Sitios de Unión , Cationes/química , Simulación por Computador , Cristalografía por Rayos X , Transferencia de Energía , Isomerismo , Espectroscopía de Resonancia Magnética , Modelos Químicos , Modelos Moleculares , Conformación Molecular , Espectrometría de Masa por Ionización de Electrospray , Especificidad por Sustrato
7.
J Med Chem ; 63(5): 2240-2262, 2020 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-31490680

RESUMEN

Malaria is still a leading cause of mortality among children in the developing world, and despite the immense progress made in reducing the global burden, further efforts are needed if eradication is to be achieved. In this context, targeting transmission is widely recognized as a necessary intervention toward that goal. After carrying out a screen to discover new transmission-blocking agents, herein we report our medicinal chemistry efforts to study the potential of the most robust hit, DDD01035881, as a male-gamete targeted compound. We reveal key structural features for the activity of this series and identify analogues with greater potency and improved metabolic stability. We believe this study lays the groundwork for further development of this series as a transmission blocking agent.


Asunto(s)
Antimaláricos/química , Antimaláricos/farmacología , Malaria/transmisión , Plasmodium falciparum/efectos de los fármacos , Animales , Descubrimiento de Drogas , Femenino , Células Germinativas/efectos de los fármacos , Células Hep G2 , Humanos , Malaria/tratamiento farmacológico , Malaria/prevención & control , Masculino , Ratones , Plasmodium falciparum/citología , Relación Estructura-Actividad
8.
Curr Opin Chem Biol ; 50: 1-9, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30875617

RESUMEN

In recent years, the research agenda to tackle global morbidity and mortality from malaria disease has shifted towards innovation, in the hope that efforts at the frontiers of scientific research may re-invigorate gains made towards eradication. Discovery of new antimalarial drugs with novel chemotypes or modes of action lie at the heart of these efforts. There is a particular interest in drug candidates that target stages of the malaria parasite lifecycle beyond the symptomatic asexual blood stages. This is especially important given the spectre of emerging drug resistance to all current frontline antimalarials. One approach gaining increased interest is the potential of designing novel drugs that target parasite passage from infected individual to feeding mosquito and back again. Action of such therapeutics is geared much more at the population level rather than just concerned with the infected individual. The search for novel drugs active against these stages has been helped by improvements to in vitro culture of transmission and pre-erythrocytic parasite lifecycle stages, robotic automation and high content imaging, methodologies that permit the high-throughput screening (HTS) of compound libraries for drug discovery. Here, we review recent advances in the antimalarial screening landscape, focussed on transmission blocking as a key aim for drug-treatment campaigns of the future.


Asunto(s)
Antimaláricos/química , Antimaláricos/farmacología , Malaria/tratamiento farmacológico , Malaria/prevención & control , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Culicidae , Resistencia a Medicamentos/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento , Humanos , Estadios del Ciclo de Vida , Plasmodium malariae/efectos de los fármacos , Plasmodium malariae/crecimiento & desarrollo
9.
ACS Infect Dis ; 4(4): 523-530, 2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29377668

RESUMEN

Diaminoquinazolines represent a privileged scaffold for antimalarial discovery, including use as putative Plasmodium histone lysine methyltransferase inhibitors. Despite this, robust evidence for their molecular targets is lacking. Here we report the design and development of a small-molecule photo-cross-linkable probe to investigate the targets of our diaminoquinazoline series. We demonstrate the effectiveness of our designed probe for photoaffinity labeling of Plasmodium lysates and identify similarities between the target profiles of the probe and the representative diaminoquinazoline BIX-01294. Initial pull-down proteomics experiments identified 104 proteins from different classes, many of which are essential, highlighting the suitability of the developed probe as a valuable tool for target identification in Plasmodium falciparum.


Asunto(s)
Antimaláricos/farmacología , Reactivos de Enlaces Cruzados/síntesis química , Reactivos de Enlaces Cruzados/metabolismo , Inhibidores Enzimáticos/farmacología , Plasmodium falciparum/efectos de los fármacos , Unión Proteica
10.
Nat Commun ; 9(1): 3805, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30228275

RESUMEN

Spread of parasite resistance to artemisinin threatens current frontline antimalarial therapies, highlighting the need for new drugs with alternative modes of action. Since only 0.2-1% of asexual parasites differentiate into sexual, transmission-competent forms, targeting this natural bottleneck provides a tangible route to interrupt disease transmission and mitigate resistance selection. Here we present a high-throughput screen of gametogenesis against a ~70,000 compound diversity library, identifying seventeen drug-like molecules that target transmission. Hit molecules possess varied activity profiles including male-specific, dual acting male-female and dual-asexual-sexual, with one promising N-((4-hydroxychroman-4-yl)methyl)-sulphonamide scaffold found to have sub-micromolar activity in vitro and in vivo efficacy. Development of leads with modes of action focussed on the sexual stages of malaria parasite development provide a previously unexplored base from which future therapeutics can be developed, capable of preventing parasite transmission through the population.


Asunto(s)
Antimaláricos/análisis , Evaluación Preclínica de Medicamentos , Ensayos Analíticos de Alto Rendimiento/métodos , Malaria/parasitología , Malaria/transmisión , Parásitos/fisiología , Animales , Antimaláricos/química , Antimaláricos/farmacología , Conducta Alimentaria , Femenino , Gametogénesis/efectos de los fármacos , Células Hep G2 , Humanos , Masculino , Ratones , Parásitos/efectos de los fármacos , Fenotipo , Reproducibilidad de los Resultados , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA