Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Breast Cancer Res Treat ; 134(2): 823-38, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22689088

RESUMEN

High mammographic density (MD) is a phenotype risk marker for breast cancer. Body mass index (BMI) is inversely associated with MD, with the breast being a fat storage site. We investigated the influence of abdominal fat distribution and adult weight gain on MD, taking age, BMI and other confounders into account. Because visceral adiposity and BMI are associated with breast cancer only after menopause, differences in pre- and post-menopausal women were also explored. We recruited 3,584 women aged 45-68 years within the Spanish breast cancer screening network. Demographic, reproductive, family and personal history data were collected by purpose-trained staff, who measured current weight, height, waist and hip circumferences under the same protocol and with the same tools. MD was assessed in the left craniocaudal view using Boyd's Semiquantitative Scale. Association between waist-to-hip ratio, adult weight gain (difference between current weight and self-reported weight at 18 years) and MD was quantified by ordinal logistic regression, with random center-specific intercepts. Models were adjusted for age, BMI, breast size, time since menopause, parity, family history of breast cancer and hormonal replacement therapy use. Natural splines were used to describe the shape of the relationship between these two variables and MD. Waist-to-hip ratio was inversely associated with MD, and the effect was more pronounced in pre-menopausal (OR = 0.53 per 0.1 units; 95 % CI = 0.42-0.66) than in post-menopausal women (OR = 0.73; 95 % CI = 0.65-0.82) (P of heterogeneity = 0.010). In contrast, adult weight gain displayed a positive association with MD, which was similar in both groups (OR = 1.17 per 6 kg; 95 % CI = 1.11-1.23). Women who had gained more than 24 kg displayed higher MD (OR = 2.05; 95 % CI = 1.53-2.73). MD was also evaluated using Wolfe's and Tabár's classifications, with similar results being obtained. Once BMI, fat distribution and other confounders were considered, our results showed a clear dose-response gradient between the number of kg gained during adulthood and the proportion of dense tissue in the breast.


Asunto(s)
Grasa Abdominal/patología , Distribución de la Grasa Corporal , Mama/patología , Mamografía , Aumento de Peso , Adiposidad , Anciano , Índice de Masa Corporal , Femenino , Humanos , Modelos Logísticos , Tamizaje Masivo , Persona de Mediana Edad , Oportunidad Relativa , Posmenopausia , Premenopausia , Factores de Riesgo , España , Gravedad Específica , Encuestas y Cuestionarios , Relación Cintura-Cadera
2.
Breast Cancer Res Treat ; 130(3): 965-74, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21748293

RESUMEN

Growth and development factors could contribute to the development of breast cancer associated with an increase in mammographic density. This study examines the influence of certain childhood-related, socio-demographic and anthropometric variables on mammographic density in adult woman. The study covered 3574 women aged 45-68 years, participating in breast cancer-screening programmes in seven Spanish cities. Based on a craniocaudal mammogram, blind, anonymous measurement of mammographic density was made by a single radiologist, using Boyd's semiquantitative scale. Data associated with the early stages of life were obtained from a direct survey. Ordinal logistic regression and generalised linear models were employed to estimate the association between mammographic density and the variables covered by the questionnaire. Screening programme was introduced as a random effects term. Age, number of children, body mass index (BMI) and other childhood-related variables were used as adjustment variables, and stratified by menopausal status. A total of 811 women (23%) presented mammographic density of over 50%, and 5% of densities exceeded 75%. Our results show a greater prevalence of high mammographic density in women with low prepubertal weight (OR: 1.18; 95% CI: 1.02-1.36); marked prepubertal height (OR: 1.25; 95% CI: 0.97-1.60) and advanced age of their mothers at their birth (>39 years: OR: 1.28; 95% CI: 1.03-1.60); and a lower prevalence of high mammographic density in women with higher prepubertal weight, low birth weight and earlier menarche. The influence of these early-life factors may be explained by greater exposure to hormones and growth factors during the development of the breast gland, when breast tissue would be particularly susceptible to proliferative and carcinogenic stimulus.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Mamografía/estadística & datos numéricos , Adulto , Anciano , Estudios Transversales , Densitometría/estadística & datos numéricos , Femenino , Humanos , Persona de Mediana Edad , Factores de Riesgo
3.
BMC Cancer ; 10: 485, 2010 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-20836850

RESUMEN

BACKGROUND: Increased mammographic breast density is a moderate risk factor for breast cancer. Different scales have been proposed for classifying mammographic density. This study sought to assess intra-rater agreement for the most widely used scales (Wolfe, Tabár, BI-RADS and Boyd) and compare them in terms of classifying mammograms as high- or low-density. METHODS: The study covered 3572 mammograms drawn from women included in the DDM-Spain study, carried-out in seven Spanish Autonomous Regions. Each mammogram was read by an expert radiologist and classified using the Wolfe, Tabár, BI-RADS and Boyd scales. In addition, 375 mammograms randomly selected were read a second time to estimate intra-rater agreement for each scale using the kappa statistic. Owing to the ordinal nature of the scales, weighted kappa was computed. The entire set of mammograms (3572) was used to calculate agreement among the different scales in classifying high/low-density patterns, with the kappa statistic being computed on a pair-wise basis. High density was defined as follows: percentage of dense tissue greater than 50% for the Boyd, "heterogeneously dense and extremely dense" categories for the BI-RADS, categories P2 and DY for the Wolfe, and categories IV and V for the Tabár scales. RESULTS: There was good agreement between the first and second reading, with weighted kappa values of 0.84 for Wolfe, 0.71 for Tabár, 0.90 for BI-RADS, and 0.92 for Boyd scale. Furthermore, there was substantial agreement among the different scales in classifying high- versus low-density patterns. Agreement was almost perfect between the quantitative scales, Boyd and BI-RADS, and good for those based on the observed pattern, i.e., Tabár and Wolfe (kappa 0.81). Agreement was lower when comparing a pattern-based (Wolfe or Tabár) versus a quantitative-based (BI-RADS or Boyd) scale. Moreover, the Wolfe and Tabár scales classified more mammograms in the high-risk group, 46.61 and 37.32% respectively, while this percentage was lower for the quantitative scales (21.89% for BI-RADS and 21.86% for Boyd). CONCLUSIONS: Visual scales of mammographic density show a high reproducibility when appropriate training is provided. Their ability to distinguish between high and low risk render them useful for routine use by breast cancer screening programs. Quantitative-based scales are more specific than pattern-based scales in classifying populations in the high-risk group.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Mamografía , Pesos y Medidas , Femenino , Humanos , Variaciones Dependientes del Observador , Pronóstico , Reproducibilidad de los Resultados
4.
Comput Methods Programs Biomed ; 116(2): 105-15, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24636804

RESUMEN

The task of breast density quantification is becoming increasingly relevant due to its association with breast cancer risk. In this work, a semi-automated and a fully automated tools to assess breast density from full-field digitized mammograms are presented. The first tool is based on a supervised interactive thresholding procedure for segmenting dense from fatty tissue and is used with a twofold goal: for assessing mammographic density (MD) in a more objective and accurate way than via visual-based methods and for labeling the mammograms that are later employed to train the fully automated tool. Although most automated methods rely on supervised approaches based on a global labeling of the mammogram, the proposed method relies on pixel-level labeling, allowing better tissue classification and density measurement on a continuous scale. The fully automated method presented combines a classification scheme based on local features and thresholding operations that improve the performance of the classifier. A dataset of 655 mammograms was used to test the concordance of both approaches in measuring MD. Three expert radiologists measured MD in each of the mammograms using the semi-automated tool (DM-Scan). It was then measured by the fully automated system and the correlation between both methods was computed. The relation between MD and breast cancer was then analyzed using a case-control dataset consisting of 230 mammograms. The Intraclass Correlation Coefficient (ICC) was used to compute reliability among raters and between techniques. The results obtained showed an average ICC=0.922 among raters when using the semi-automated tool, whilst the average correlation between the semi-automated and automated measures was ICC=0.838. In the case-control study, the results obtained showed Odds Ratios (OR) of 1.38 and 1.50 per 10% increase in MD when using the semi-automated and fully automated approaches respectively. It can therefore be concluded that the automated and semi-automated MD assessments present a good correlation. Both the methods also found an association between MD and breast cancer risk, which warrants the proposed tools for breast cancer risk prediction and clinical decision making. A full version of the DM-Scan is freely available.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/diagnóstico , Diagnóstico por Computador/estadística & datos numéricos , Glándulas Mamarias Humanas/anomalías , Mamografía/estadística & datos numéricos , Anciano , Automatización/estadística & datos numéricos , Densidad de la Mama , Neoplasias de la Mama/clasificación , Estudios de Casos y Controles , Estudios Transversales , Bases de Datos Factuales/estadística & datos numéricos , Femenino , Humanos , Persona de Mediana Edad , Oportunidad Relativa , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Factores de Riesgo
5.
Springerplus ; 2(1): 242, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23865000

RESUMEN

We developed a semi-automated tool to assess mammographic density (MD), a phenotype risk marker for breast cancer (BC), in full-field digital images and evaluated its performance testing its reproducibility, comparing our MD estimates with those obtained by visual inspection and using Cumulus, verifying their association with factors that influence MD, and studying the association between MD measures and subsequent BC risk. Three radiologists assessed MD using DM-Scan, the new tool, on 655 processed images (craniocaudal view) obtained in two screening centers. Reproducibility was explored computing pair-wise concordance correlation coefficients (CCC). The agreement between DM-Scan estimates and visual assessment (semi-quantitative scale, 6 categories) was quantified computing weighted kappa statistics (quadratic weights). DM-Scan and Cumulus readings were compared using CCC. Variation of DM-Scan measures by age, body mass index (BMI) and other MD modifiers was tested in regression mixed models with mammographic device as a random-effect term. The association between DM-Scan measures and subsequent BC was estimated in a case-control study. All BC cases in screening attendants (2007-2010) at a center with full-field digital mammography were matched by age and screening year with healthy controls (127 pairs). DM-Scan was used to blindly assess MD in available mammograms (112 cases/119 controls). Unconditional logistic models were fitted, including age, menopausal status and BMI as confounders. DM-Scan estimates were very reliable (pairwise CCC: 0.921, 0.928 and 0.916). They showed a reasonable agreement with visual MD assessment (weighted kappa ranging 0.79-0.81). DM-Scan and Cumulus measures were highly concordant (CCC ranging 0.80-0.84), but ours tended to be higher (4%-5% on average). As expected, DM-Scan estimates varied with age, BMI, parity and family history of BC. Finally, DM-Scan measures were significantly associated with BC (p-trend=0.005). Taking MD<7% as reference, OR per categories of MD were: OR7%-17%=1.32 (95% CI=0.59-2.99), OR17%-28%=2.28 (95% CI=1.03-5.04) and OR>=29%=3.10 (95% CI=1.35-7.14). Our results confirm that DM-Scan is a reliable tool to assess MD in full-field digital mammograms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA