Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38928164

RESUMEN

Neurogenesis is the process by which new brain cells are formed. This crucial event emerges during embryonic life and proceeds in adulthood, and it could be influenced by environmental pollution. Non-combustion-derived magnetite represents a portion of the coarse particulate matter (PM) contributing to air and water pollution in urban settings. Studies on humans have reported that magnetite and other iron oxides have significant damaging effects at a central level, where these particles accumulate and promote oxidative stress. Similarly, magnetite nanoparticles can cross the placenta and damage the embryo brain during development, but the impact on neurogenesis is still unknown. Furthermore, an abnormal Fe cation concentration in cells and tissues might promote reactive oxygen species (ROS) generation and has been associated with multiple neurodegenerative conditions. In the present study, we used zebrafish as an in vivo system to analyze the specific effects of magnetite on embryonic neurogenesis. First, we characterized magnetite using mineralogical and spectroscopic analyses. Embryos treated with magnetite at sub-lethal concentrations showed a dose-response increase in ROS in the brain, which was accompanied by a massive decrease in antioxidant genes (sod2, cat, gsr, and nrf2). In addition, a higher number of apoptotic cells was observed in embryos treated with magnetite. Next, interestingly, embryos exposed to magnetite displayed a decrease in neural staminal progenitors (nestin, sox2, and pcna markers) and a neuronal marker (elavl3). Finally, we observed significative increases in apoeb (specific microglia marker) and interleukin-1b (il1b), confirming a status of inflammation in the brain embryos treated with magnetite. Our study represents the very first in vivo evidence concerning the effects of magnetite on brain development.


Asunto(s)
Embrión no Mamífero , Óxido Ferrosoférrico , Neurogénesis , Pez Cebra , Animales , Pez Cebra/embriología , Neurogénesis/efectos de los fármacos , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/embriología , Apoptosis/efectos de los fármacos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/toxicidad
2.
J Am Chem Soc ; 143(43): 18010-18019, 2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34689551

RESUMEN

Combining the abundance and inexpensiveness of their constituent elements with their atomic dispersion, atomically dispersed Fe-N-C catalysts represent the most promising alternative to precious-metal-based materials in proton exchange membrane (PEM) fuel cells. Due to the high temperatures involved in their synthesis and the sensitivity of Fe ions toward carbothermal reduction, current synthetic methods are intrinsically limited in type and amount of the desired, catalytically active Fe-N4 sites, and high active site densities have been out of reach (dilemma of Fe-N-C catalysts). We herein identify a paradigm change in the synthesis of Fe-N-C catalysts arising from the developments of other M-N-C single-atom catalysts. Supported by DFT calculations we propose fundamental principles for the synthesis of M-N-C materials. We further exploit the proposed principles in a novel synthetic strategy to surpass the dilemma of Fe-N-C catalysts. The selective formation of tetrapyrrolic Zn-N4 sites in a tailor-made Zn-N-C material is utilized as an active-site imprint for the preparation of a corresponding Fe-N-C catalyst. By successive low- and high-temperature ion exchange reactions, we obtain a phase-pure Fe-N-C catalyst, with a high loading of atomically dispersed Fe (>3 wt %). Moreover, the catalyst is entirely composed of tetrapyrrolic Fe-N4 sites. The density of tetrapyrrolic Fe-N4 sites is more than six times as high as for previously reported tetrapyrrolic single-site Fe-N-C fuel cell catalysts.

3.
J Am Chem Soc ; 142(36): 15496-15504, 2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32794757

RESUMEN

Single-atom catalysts (SACs) have quickly emerged as a new class of catalytic materials. When confronted with classical carbon-supported nanoparticulated catalysts (Pt/C), SACs are often claimed to have superior electrocatalytic properties, e.g., stability. In this study, we critically assess this statement by investigating S-doped carbon-supported Pt SACs as a representative example of noble-metal-based SACs. We use a set of complementary techniques, which includes online inductively coupled plasma mass spectrometry (online ICP-MS), identical location transmission electron microscopy (IL-TEM), and X-ray photoelectron spectroscopy (XPS). It is shown by online ICP-MS that the dissolution behavior of as-synthesized Pt SACs is significantly different from that of metallic Pt/C. Moreover, Pt SACs are, indeed, confirmed to be more stable toward Pt dissolution. When cycled to potentials of up to 1.5 VRHE, however, the dissolution profiles of Pt SACs and Pt/C become similar. IL-TEM and XPS show that this transition is due to morphological and chemical changes caused by cycling. The latter, in turn, is a consequence of the relatively poor stability of S ligands. As monitored by online ICP-MS and XPS, significant amounts of sulfur leave the catalyst during oxidation. Hence, in case catalysts with improved stability in the anodic potential region are desired, more robust supports and ligands must be developed.

4.
Nano Lett ; 19(8): 4919-4927, 2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-31021636

RESUMEN

Catalytic properties of advanced functional materials are determined by their surface and near-surface atomic structure, composition, morphology, defects, compressive and tensile stresses, etc; also known as a structure-activity relationship. The catalysts structural properties are dynamically changing as they perform via complex phenomenon dependent on the reaction conditions. In turn, not just the structural features but even more importantly, catalytic characteristics of nanoparticles get altered. Definitive conclusions about these phenomena are not possible with imaging of random nanoparticles with unknown atomic structure history. Using a contemporary PtCu-alloy electrocatalyst as a model system, a unique approach allowing unprecedented insight into the morphological dynamics on the atomic-scale caused by the process of dealloying is presented. Observing the detailed structure and morphology of the same nanoparticle at different stages of electrochemical treatment reveals new insights into atomic-scale processes such as size, faceting, strain and porosity development. Furthermore, based on precise atomically resolved microscopy data, Kinetic Monte Carlo (KMC) simulations provide further feedback into the physical parameters governing electrochemically induced structural dynamics. This work introduces a unique approach toward observation and understanding of nanoparticles dynamic changes on the atomic level and paves the way for an understanding of the structure-stability relationship.

5.
Angew Chem Int Ed Engl ; 58(38): 13266-13270, 2019 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-31163100

RESUMEN

Preparation of large quantities of high-performance supported Pt-alloy electrocatalysts is crucial for the faster development and implementation of low-temperature proton exchange membrane fuel cells (PEMFCs). One of the prospective nanofabrication synthesis methods is based on the galvanic displacement (GD) reaction. A facile, highly reproducible, gram scale, water-based double passivation GD method is now presented for the synthesis of carbon-supported Pt-M nanoparticles (M=Cu, Ni, Co). It offers great flexibility over the catalyst design, such as the choice of the sacrificial metal (M), variation of the chemical composition of alloy, variation of total metal loading (Pt+M) on carbon support, or even variation of the carbon support itself. The obtained Pt-alloy catalysts are several times more active compared to a Pt reference and exhibits better stability during accelerated degradation tests performed at 60 °C.

6.
J Am Chem Soc ; 139(36): 12837-12846, 2017 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-28810123

RESUMEN

Iridium-based particles, regarded as the most promising proton exchange membrane electrolyzer electrocatalysts, were investigated by transmission electron microscopy and by coupling of an electrochemical flow cell (EFC) with online inductively coupled plasma mass spectrometry. Additionally, studies using a thin-film rotating disc electrode, identical location transmission and scanning electron microscopy, as well as X-ray absorption spectroscopy have been performed. Extremely sensitive online time-and potential-resolved electrochemical dissolution profiles revealed that Ir particles dissolve well below oxygen evolution reaction (OER) potentials, presumably induced by Ir surface oxidation and reduction processes, also referred to as transient dissolution. Overall, thermally prepared rutile-type IrO2 particles are substantially more stable and less active in comparison to as-prepared metallic and electrochemically pretreated (E-Ir) analogues. Interestingly, under OER-relevant conditions, E-Ir particles exhibit superior stability and activity owing to the altered corrosion mechanism, where the formation of unstable Ir(>IV) species is hindered. Due to the enhanced and lasting OER performance, electrochemically pre-oxidized E-Ir particles may be considered as the electrocatalyst of choice for an improved low-temperature electrochemical hydrogen production device, namely a proton exchange membrane electrolyzer.

7.
Phys Chem Chem Phys ; 19(32): 21446-21452, 2017 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-28759065

RESUMEN

The dissolution of different platinum-based nanoparticles deposited on a commercial high-surface area carbon (HSAC) support in thin catalyst films is investigated using a highly sensitive electrochemical flow cell (EFC) coupled to an inductively coupled plasma mass spectrometer (ICP-MS). The previously reported particle-size-dependent dissolution of Pt is confirmed on selected industrial samples with a mean Pt particle size ranging from 1 to 4.8 nm. This trend is significantly altered when a catalyst is diluted by the addition of HSAC. This indicates that the intrinsic dissolution properties are masked by local oversaturation phenomena, the so-called confinement effect. Furthermore, by replacing the standard HSAC support with a support having an order of magnitude higher specific surface area (a micro- and mesoporous nitrogen-doped high surface area carbon, HSANDC), Pt dissolution is reduced even further. This is due to the so-called non-intrinsic confinement and entrapment effects of the (large amount of) micropores and small mesopores doped with N atoms. The observed more effective Pt re-deposition is presumably induced by local Pt oversaturation and the presence of nitrogen nucleation sites. Overall, our study demonstrates the high importance and beneficial effects of porosity, loading and N doping of the carbon support on the Pt stability in the catalyst layer.

8.
Nano Lett ; 14(11): 6718-26, 2014 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-25338111

RESUMEN

Gold-copper (Au-Cu) phases were employed already by pre-Columbian civilizations, essentially in decorative arts, whereas nowadays, they emerge in nanotechnology as an important catalyst. The knowledge of the phase diagram is critical to understanding the performance of a material. However, experimental determination of nanophase diagrams is rare because calorimetry remains quite challenging at the nanoscale; theoretical investigations, therefore, are welcomed. Using nanothermodynamics, this paper presents the phase diagrams of various polyhedral nanoparticles (tetrahedron, cube, octahedron, decahedron, dodecahedron, rhombic dodecahedron, truncated octahedron, cuboctahedron, and icosahedron) at sizes 4 and 10 nm. One finds, for all the shapes investigated, that the congruent melting point of these nanoparticles is shifted with respect to both size and composition (copper enrichment). Segregation reveals a gold enrichment at the surface, leading to a kind of core-shell structure, reminiscent of the historical artifacts. Finally, the most stable structures were determined to be the dodecahedron, truncated octahedron, and icosahedron with a Cu-rich core/Au-rich surface. The results of the thermodynamic approach are compared and supported by molecular-dynamics simulations and by electron-microscopy (EDX) observations.


Asunto(s)
Cobre/química , Aleaciones de Oro/química , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Simulación de Dinámica Molecular , Nanotecnología , Tamaño de la Partícula , Transición de Fase , Termodinámica
9.
Inorg Chem Front ; 11(2): 323-341, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38235274

RESUMEN

Platinum-based fuel cell electrocatalysts are structured on a nano level in order to extend their active surface area and maximize the utilization of precious and scarce platinum. Their performance is dictated by the atomic arrangement of their surface layers atoms via structure-property relationships. Transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) are the preferred methods for characterizing these catalysts, due to their capacity to achieve local atomic-level resolutions. Size, morphology, strain and local composition are just some of the properties of Pt-based nanostructures that can be obtained by (S)TEM. Furthermore, advanced methods of (S)TEM are able to provide insights into the quasi-in situ, in situ or even operando stability of these nanostructures. In this review, we present state-of-the-art applications of (S)TEM in the investigation and interpretation of structure-activity and structure-stability relationships.

10.
Sci Rep ; 14(1): 9234, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649471

RESUMEN

In this study, we introduce a novel approach using correlative analysis techniques to unravel detailed insights into the environmental influences on crystal growth. Tabular and bipyramidal wulfenite samples from the Mezica mine in north-eastern Slovenia were analysed to combine the morphological aspects of crystal growth with the atomic-resolution reconstruction of the positions of lead (Pb) and molybdenum (Mo) atoms in the parent crystal lattice. These combined data also allow us to present the formation mechanism that enables the development of bipyramidal or tabular morphologies in wulfenite. The bipyramidal and tabular crystals are chemically pure wulfenite (PbMoO4), as confirmed by various advanced diffraction and spectroscopy techniques. However, each habit includes multiple inclusions, mostly consisting of carbonates, Pb-Fe oxides, Pb oxides and, more rarely, Pb vanadate (descloizite). The differences in the morphologies can be attributed to compositional changes during precipitation from a meteoric solution and thus, we propose a growth mechanism consisting of three different phases of growth. This innovative approach emphasises the importance of understanding the origin of crystal habits, as can help to decipher how external influences can affect the crystal structure and its surface, leading to the dissolution of preferred surfaces and the selective release of Pb and Mo.

11.
Adv Mater ; 36(11): e2307077, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37793118

RESUMEN

3D ceramic architectures are captivating geometrical features with an immense demand in optics. In this work, an additive manufacturing (AM) approach for printing alkaline-earth perovskite 3D microarchitectures is developed. The approach enables custom-made photoresists suited for two-photon lithography, permitting the production of alkaline-earth perovskite (BaZrO3 , CaZrO3 , and SrZrO3 ) 3D structures shaped in the form of octet-truss lattices, gyroids, or inspired architectures like sodalite zeolite, and C60 buckyballs with micrometric and nanometric feature sizes. Alkaline-earth perovskite morphological, structural, and chemical characteristics are studied. The optical properties of such perovskite architectures are investigated using cathodoluminescence and wide-field photoluminescence emission to estimate the lifetime rate and defects in BaZrO3 , CaZrO3 , and SrZrO3 . From a broad perspective, this AM methodology facilitates the production of 3D-structured mixed oxides. These findings are the first steps toward dimensionally refined high-refractive-index ceramics for micro-optics and other terrains like (photo/electro)catalysis.

12.
ACS Catal ; 14(6): 4303-4317, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38510667

RESUMEN

A current trend in the investigation of state-of-the-art Pt-alloys as proton exchange membrane fuel cell (PEMFC) electrocatalysts is to study their long-term stability as a bottleneck for their full commercialization. Although many parameters have been appropriately addressed, there are still certain issues that must be considered. Here, the stability of an experimental Pt-Co/C electrocatalyst is investigated by high-temperature accelerated degradation tests (HT-ADTs) in a high-temperature disk electrode (HT-DE) setup, allowing the imitation of close-to-real operational conditions in terms of temperature (60 °C). Although the US Department of Energy (DoE) protocol has been chosen as the basis of the study (30,000 trapezoidal wave cycling steps between 0.6 and 0.95 VRHE with a 3 s hold time at both the lower potential limit (LPL) and the upper potential limit (UPL)), this works demonstrates that limiting both the LPL and UPL (from 0.6-0.95 to 0.7-0.85 VRHE) can dramatically reduce the degradation rate of state-of-the-art Pt-alloy electrocatalysts. This has been additionally confirmed with the use of an electrochemical flow cell coupled to inductively coupled plasma mass spectrometry (EFC-ICP-MS), which enables real-time monitoring of the dissolution mechanisms of Pt and Co. In line with the HT-DE methodology observations, a dramatic decrease in the total dissolution of Pt and Co has once again been observed upon narrowing the potential window to 0.7-0.85 VRHE rather than 0.6-0.95 VRHE. Additionally, the effect of the potential hold time at both LPL and UPL on metal dissolution has also been investigated. The findings demonstrate that the dissolution rate of both metals is proportional to the hold time at UPL regardless of the applied potential window, whereas the hold time at the LPL does not appear to be as detrimental to the stability of metals.

13.
ACS Catal ; 14(4): 2473-2486, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38384942

RESUMEN

In the present work, we report on a synergistic relationship between platinum nanoparticles and a titanium oxynitride support (TiOxNy/C) in the context of oxygen reduction reaction (ORR) catalysis. As demonstrated herein, this composite configuration results in significantly improved electrocatalytic activity toward the ORR relative to platinum dispersed on carbon support (Pt/C) at high overpotentials. Specifically, the ORR performance was assessed under an elevated mass transport regime using the modified floating electrode configuration, which enabled us to pursue the reaction closer to PEMFC-relevant current densities. A comprehensive investigation attributes the ORR performance increase to a strong interaction between platinum and the TiOxNy/C support. In particular, according to the generated strain maps obtained via scanning transmission electron microscopy (STEM), the Pt-TiOxNy/C analogue exhibits a more localized strain in Pt nanoparticles in comparison to that in the Pt/C sample. The altered Pt structure could explain the measured ORR activity trend via the d-band theory, which lowers the platinum surface coverage with ORR intermediates. In terms of the Pt particle size effect, our observation presents an anomaly as the Pt-TiOxNy/C analogue, despite having almost two times smaller nanoparticles (2.9 nm) compared to the Pt/C benchmark (4.8 nm), manifests higher specific activity. This provides a promising strategy to further lower the Pt loading and increase the ECSA without sacrificing the catalytic activity under fuel cell-relevant potentials. Apart from the ORR, the platinum-TiOxNy/C interaction is of a sufficient magnitude not to follow the typical particle size effect also in the context of other reactions such as CO stripping, hydrogen oxidation reaction, and water discharge. The trend for the latter is ascribed to the lower oxophilicity of Pt-based on electrochemical surface coverage analysis. Namely, a lower surface coverage with oxygenated species is found for the Pt-TiOxNy/C analogue. Further insights were provided by performing a detailed STEM characterization via the identical location mode (IL-STEM) in particular, via 4DSTEM acquisition. This disclosed that Pt particles are partially encapsulated within a thin layer of TiOxNy origin.

14.
Adv Mater ; 35(31): e2210937, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37120801

RESUMEN

Hysteresis is a general phenomenon regularly observed in various materials. Usually, hysteretic behavior is an intrinsic property that cannot be circumvented in the nonequilibrium operation of the system. Herein, it is shown that, at least with regard to the hysteretic behavior of phase-separating battery materials, it is possible to enter (deeply) the hysteretic loop at finite battery currents. This newly observed electric response of the electrode, which is inherent to phase-separating materials, is related to its microscopic origin arising from a (significant) share of the active material residing in an intraparticle phase-separated state. This intriguing observation is further generalized by revealing that a phase-separating material can feature (significantly) different chemical potentials at the same bulk lithiation level and temperature when exposed to the same finite current and external voltage hysteresis. Therefore, the intraparticle phase-separated state significantly affects the DC and AC characteristics of the battery. The experimental evidence for entering the intraparticle phase-separated state is supported by thermodynamic reasoning and advanced modeling. The current findings will help advance the understanding, control, diagnostics, and monitoring of batteries composed of phase-separating materials while also providing pertinent motivation for the enhancement of battery design and performance.

15.
Materials (Basel) ; 16(9)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37176426

RESUMEN

In the past, platinum-copper catalysts have proven to be highly active for the oxygen reduction reaction (ORR), but transferring the high activities measured in thin-film rotating disk electrodes (TF-RDEs) to high-performing membrane electrode assemblies (MEAs) has proven difficult due to stability issues during operation. High initial performance can be achieved. However, fast performance decay on a timescale of 24 h is induced by repeated voltage load steps with H2/air supplied. This performance decay is accelerated if high relative humidity (>60% RH) is set for a prolonged time and low voltages are applied during polarization. The reasons and possible solutions for this issue have been investigated by means of electrochemical impedance spectroscopy and distribution of relaxation time analysis (EIS-DRT). The affected electrochemical sub-processes have been identified by comparing the PtCu electrocatalyst with commercial Pt/C benchmark materials in homemade catalyst-coated membranes (CCMs). The proton transport resistance (Rpt) increased by a factor of ~2 compared to the benchmark materials. These results provide important insight into the challenges encountered with the de-alloyed PtCu/KB electrocatalyst during cell break-in and operation. This provides a basis for improvements in the catalysts' design and break-in procedures for the highly attractive PtCu/KB catalyst system.

16.
RSC Adv ; 13(7): 4601-4611, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36760270

RESUMEN

The design of catalysts with stable and finely dispersed platinum or platinum alloy nanoparticles on the carbon support is key in controlling the performance of proton exchange membrane (PEM) fuel cells. In the present work, an intermetallic PtCo/C catalyst is synthesized via double-passivation galvanic displacement. TEM and XRD confirm a significantly narrowed particle size distribution for the catalyst particles compared to commercial benchmark catalysts (Umicore PtCo/C). Only about 10% of the mass fraction of PtCo particles show a diameter larger than 8 nm, whereas this is up to or even more than 35% for the reference systems. This directly results in a considerable increase in electrochemically active surface area (96 m2 g-1 vs. >70 m2 g-1), which confirms the more efficient usage of precious catalyst metal in the novel catalyst. Single-cell tests validate this finding by improved PEM fuel cell performance. Reducing the cathode catalyst loading from 0.4 mg cm-2 to 0.25 mg cm-2 resulted in a power density drop at an application-relevant 0.7 V of only 4% for the novel catalyst, compared to the 10% and 20% for the commercial benchmarks reference catalysts.

17.
ACS Catal ; 12(20): 13021-13033, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36313525

RESUMEN

Water electrolysis powered by renewables is regarded as the feasible route for the production of hydrogen, obtained at the cathode side through electrochemical hydrogen evolution reaction (HER). Herein, we present a rational strategy to improve the overall HER catalytic performance of Pt, which is known as the best monometallic catalyst for this reaction, by supporting it on a conductive titanium oxynitride (TiON x ) dispersed over reduced graphene oxide nanoribbons. Characterization of the Pt/TiON x composite revealed the presence of small Pt particles with diameters between 2 and 3 nm, which are well dispersed over the TiON x support. The Pt/TiON x nanocomposite exhibited improved HER activity and stability with respect to the Pt/C benchmark in an acid electrolyte, which was ascribed to the strong metal-support interaction (SMSI) triggered between the TiON x support and grafted Pt nanoparticles. SMSI between TiON x and Pt was evidenced by X-ray photoelectron spectroscopy (XPS) through a shift of the binding energies of the characteristic Pt 4f photoelectron lines with respect to Pt/C. Density functional theory (DFT) calculations confirmed the strong interaction between Pt nanoparticles and the TiON x support. This strong interaction improves the stability of Pt nanoparticles and weakens the binding of chemisorbed H atoms thereon. Both of these effects may result in enhanced HER activity.

18.
ACS Catal ; 12(1): 101-115, 2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-35028189

RESUMEN

The present research provides a study of carbon-supported intermetallic Pt-alloy electrocatalysts and assesses their stability against metal dissolution in relation to the operating temperature and the potential window using two advanced electrochemical methodologies: (i) the in-house designed high-temperature disk electrode (HT-DE) methodology as well as (ii) a modification of the electrochemical flow cell coupled to an inductively coupled plasma mass spectrometer (EFC-ICP-MS) methodology, allowing for highly sensitive time- and potential-resolved measurements of metal dissolution. While the rate of carbon corrosion follows the Arrhenius law and increases exponentially with temperature, the findings of the present study contradict the generally accepted hypothesis that the kinetics of Pt and subsequently the less noble metal dissolution are supposed to be for the most part unaffected by temperature. On the contrary, clear evidence is presented that in addition to the importance of the voltage/potential window, the temperature is one of the most critical parameters governing the stability of Pt and thus, in the case of Pt-alloy electrocatalysts, also the ability of the nanoparticles (NPs) to retain the less noble metal. Lastly, but also very importantly, results indicate that the rate of Pt redeposition significantly increases with temperature, which has been the main reason why mechanistic interpretation of the temperature-dependent kinetics related to the stability of Pt remained highly speculative until now.

19.
ACS Appl Mater Interfaces ; 14(28): 31767-31781, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35786845

RESUMEN

Photocatalytic H2 generation by water splitting is a promising alternative for producing renewable fuels. This work synthesized a new type of Ta2O5/SrZrO3 heterostructure with Ru and Cu (RuO2/CuxO/Ta2O5/SrZrO3) using solid-state chemistry methods to achieve a high H2 production of 5164 µmol g-1 h-1 under simulated solar light, 39 times higher than that produced using SrZrO3. The heterostructure performance is compared with other Ta2O5/SrZrO3 heterostructure compositions loaded with RuO2, CuxO, or Pt. CuxO is used to showcase the usage of less costly cocatalysts to produce H2. The photocatalytic activity toward H2 by the RuO2/CuxO/Ta2O5/SrZrO3 heterostructure remains the highest, followed by RuO2/Ta2O5/SrZrO3 > CuxO/Ta2O5/SrZrO3 > Pt/Ta2O5/SrZrO3 > Ta2O5/SrZrO3 > SrZrO3. Band gap tunability and high optical absorbance in the visible region are more prominent for the heterostructures containing cocatalysts (RuO2 or CuxO) and are even higher for the binary catalyst (RuO2/CuxO). The presence of the binary catalyst is observed to impact the charge carrier transport in Ta2O5/SrZrO3, improving the solar to hydrogen conversion efficiency. The results represent a valuable contribution to the design of SrZrO3-based heterostructures for photocatalytic H2 production by solar water splitting.

20.
ACS Appl Energy Mater ; 5(7): 8862-8877, 2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35909804

RESUMEN

Pt-alloy (Pt-M) nanoparticles (NPs) with less-expensive 3d transition metals (M = Ni, Cu, Co) supported on high-surface-area carbon supports are currently the state-of-the-art (SoA) solution to reach the production phase in proton exchange membrane fuel cells (PEMFCs). However, while Pt-M electrocatalysts show promise in terms of increased activity for oxygen reduction reaction (ORR) and, thus, cost reductions from the significantly lower use of expensive and rare Pt, key challenges in terms of synthesis, activation, and stability remain to unlock their true potential. This work systematically tackles them with a combination of electrocatalyst synthesis and characterization methodologies including thin-film rotating disc electrodes (TF-RDEs), an electrochemical flow cell linked to an inductively coupled plasma mass spectrometer (EFC-ICP-MS), and testing in 50 cm2 membrane electrode assemblies (MEAs). In the first part of the present work, we highlight the crucial importance of the chemical activation (dealloying) step on the performance of Pt-M electrocatalysts in the MEA at high current densities (HCDs). In addition, we provide the scientific community with a preliminary and facile method of distinguishing between a "poorly" and "adequately" dealloyed (activated) Pt-alloy electrocatalyst using a much simpler and affordable TF-RDE methodology using the well-known CO-stripping process. Since the transition-metal cations can also be introduced in a PEMFC due to the degradation of the Pt-M NPs, the second part of the work focuses on presenting clear evidence on the direct impact of the lower voltage limit (LVL) on the stability of Pt-M electrocatalysts. The data suggests that in addition to intrinsic improvements in stability, significant improvements in the PEMFC lifetime can also be obtained via the correct MEA design and applied limits of operation, namely, restricting not just the upper but equally important also the lower operation voltage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA