Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nature ; 630(8016): 381-386, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38811733

RESUMEN

Lignocellulose is mainly composed of hydrophobic lignin and hydrophilic polysaccharide polymers, contributing to an indispensable carbon resource for green biorefineries1,2. When chemically treated, lignin is compromised owing to detrimental intra- and intermolecular crosslinking that hampers downstream process3,4. The current valorization paradigms aim to avoid the formation of new C-C bonds, referred to as condensation, by blocking or stabilizing the vulnerable moieties of lignin5-7. Although there have been efforts to enhance biomass utilization through the incorporation of phenolic additives8,9, exploiting lignin's proclivity towards condensation remains unproven for valorizing both lignin and carbohydrates to high-value products. Here we leverage the proclivity by directing the C-C bond formation in a catalytic arylation pathway using lignin-derived phenols with high nucleophilicity. The selectively condensed lignin, isolated in near-quantitative yields while preserving its prominent cleavable ß-ether units, can be unlocked in a tandem catalytic process involving aryl migration and transfer hydrogenation. Lignin in wood is thereby converted to benign bisphenols (34-48 wt%) that represent performance-advantaged replacements for their fossil-based counterparts. Delignified pulp from cellulose and xylose from xylan are co-produced for textile fibres and renewable chemicals. This condensation-driven strategy represents a key advancement complementary to other promising monophenol-oriented approaches targeting valuable platform chemicals and materials, thereby contributing to holistic biomass valorization.


Asunto(s)
Compuestos de Bencidrilo , Biomasa , Fraccionamiento Químico , Lignina , Fenoles , Compuestos de Bencidrilo/química , Compuestos de Bencidrilo/metabolismo , Catálisis , Celulosa/química , Celulosa/metabolismo , Fraccionamiento Químico/métodos , Hidrogenación , Lignina/química , Lignina/metabolismo , Fenoles/química , Fenoles/metabolismo , Madera/química , Xilanos/química , Xilanos/metabolismo , Xilosa/química , Xilosa/metabolismo , Combustibles Fósiles , Textiles
2.
Anal Chem ; 95(2): 1436-1445, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36548212

RESUMEN

The increased interest in utilizing lignin as a feedstock to produce various aromatic compounds requires advanced chemical analysis methods to provide qualitative and quantitative characterization of lignin samples along different technology streamlines. However, due to the lack of commercially available chemical standards, routine quantification of industrially relevant lignin oligomers in complex lignin samples remains a challenge. This study presents a novel method for universal quantification of lignin dimers based on supercritical fluid chromatography with charged aerosol detection (CAD). A series of lignin-derived dimeric compounds that have been reported from reductive catalytic fractionation (RCF) were synthesized and used as standards. The applicability of using linear regression instead of quadratic calibration curves was evaluated over a concentration range of 15-125 mg/L, demonstrating that the former calibration method is as appropriate as the latter. The response factors of lignin dimeric compounds were compared to assess the uniformity of the CAD signal, revealing that the CAD response for the tested lignin dimers did not differ substantially. It was also found that the response factors were not dependent on the number of methoxy groups or linkage motifs, ultimately enabling the use of only one calibrant for these compounds. The importance of chromatographic peak resolution in CAD was stressed, and the use of a digital peak sharpening technique was adopted and applied to address this challenge. The developed method was verified and used for the quantification of lignin dimers in an oil obtained by a RCF of birch sawdust.


Asunto(s)
Cromatografía con Fluido Supercrítico , Lignina , Lignina/análisis , Polímeros/análisis , Cromatografía Líquida de Alta Presión , Aerosoles/análisis
3.
Org Biomol Chem ; 21(7): 1501-1513, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36688538

RESUMEN

Alkylphenylacetylene derivatives were synthesized and used as reactants in the Larock heteroannulation reaction to investigate the steric influence on regioselectivity. Large alkyl groups preferentially yielded 2-alkyl-3-phenylindole products, while smaller alkyl groups provided 3-alkyl-2-phenylindole as major products. The logarithm of regioisomeric product ratios exhibited good correlations with various steric parameters. Notably, the Charton values provided the best correlation when excluding the cyclopropyl group. In addition, the Boltzmann-weighted Sterimol parameter (wSterimol) was utilized to generate a good predictive model, indicating the B1 wSterimol as the significant regiochemical determining parameter with no obvious deviation for the cyclopropyl group. Relative atomic distances within the DFT-optimized transition state structures revealed good correlations with the logarithm of regioisomeric ratios. Furthermore, the cyclopropyl adsorption complex indicated electronic contribution, explaining the peculiar behavior of this substituent in the experimental observation.

4.
J Org Chem ; 84(17): 11219-11227, 2019 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-31385499

RESUMEN

Chiral α-sulfenylated ketones are versatile building blocks, although there are still several limitations with their preparation. Here we report a new two-step procedure, consisting of Pd-catalyzed hydrothiolation of propargylic alcohols followed by an enantioselective Rh isomerization of allylic alcohols. The isomerization reaction is the key step for obtaining the ketones in their enantioenriched form. The new methodology has a high atom economy and induces good to high levels of enantioselectivity; no waste is produced. A mechanism involving a Rh-hydride-enone intermediate is proposed for the isomerization reaction.

5.
J Org Chem ; 83(7): 4099-4104, 2018 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-29517906

RESUMEN

Nonactivated phenols have been employed as nucleophiles in the allylation of nonderivatized allylic alcohols to generate allylated phenolic ethers with water as the only byproduct. A Pd[BiPhePhos] catalyst was found to be reactive to give the O-allylated phenols in good to excellent yields in the presence of molecular sieves. The reactions are chemoselective in which the kinetically favored O-allylated products are formed exclusively over the thermodynamically favored C-allylated products.

6.
Bioorg Med Chem Lett ; 26(9): 2119-23, 2016 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-27032333

RESUMEN

A series of 2,3-diarylindoles were synthesized via the Larock heteroannulation, and evaluated for their anticancer activity against A549 lung cancer cells. The most potent compound, PCNT13 with IC50=5.17 µM, caused the induction of two modes of programmed cell death, apoptosis and autophagy.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Indoles/farmacología , Células A549 , Antineoplásicos/síntesis química , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Indoles/síntesis química , Macrólidos/farmacología , Relación Estructura-Actividad
7.
J Org Chem ; 78(24): 12703-9, 2013 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-24279463

RESUMEN

A series of 2,3-diarylindoles were synthesized from 2-iodoaniline and unsymmetrical diarylacetylenes using the Larock heteroannulation. Diarylacetylenes bearing electron-withdrawing substituents lead to 2,3-diarylindoles with substituted phenyl moieties at the 2-position as major products, while those with electron-donating groups preferably yield indole products with substituted phenyl moieties at the 3-position. The regioisomeric product ratios exhibit a clear correlation with Hammett σ(p) values. DFT calculations reveal the origin of this effect, displaying smaller activation energy barriers for those pathways leading to the major regioisomer.


Asunto(s)
Alquinos/química , Indoles/síntesis química , Compuestos de Anilina/química , Electrones , Indoles/química , Modelos Moleculares , Estructura Molecular , Teoría Cuántica , Estereoisomerismo
8.
Nat Chem ; 13(11): 1118-1125, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34556848

RESUMEN

Lignin is an aromatic polymer that constitutes up to 30 wt% of woody biomass and is considered the largest source of renewable aromatics. Valorization of the lignin stream is pivotal for making biorefining sustainable. Monomeric units in lignin are bound via C-O and C-C bonds. The majority of existing methods for the production of valuable compounds from lignin are based on the depolymerization of lignin via cleavage of relatively labile C-O bonds within lignin structure, which leads to yields of only 36-40 wt%. The remaining fraction (60 wt%) is a complex mixture of high-molecular-weight lignin, generally left unvalorized. Here we present a method to produce additional valuable monomers from the high-molecular-weight lignin fraction through oxidative C-C bond cleavage. This oxidation reaction proceeds with a high selectivity to give 2,6-dimethoxybenzoquinone (DMBQ) from high-molecular-weight lignin in 18 wt% yield, thus increasing the yield of monomers by 32%. This is an important step to make biorefining competitive with petroleum-based refineries.


Asunto(s)
Carbono/química , Lignina/química , Biomasa , Catálisis , Peso Molecular , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA