Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Asunto principal
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 2905, 2024 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-38316871

RESUMEN

The scientific interest in boredom is growing over the past decades. Boredom has not only been linked to symptoms of psychopathology, but also shows a remarkable effect on individual behavior under healthy conditions. Current characterizations of boredom in humans mostly rely on self-report assessments which proved to faithfully reflect boredom in a vast range of experimental environments. Two of the most commonly used and prominent self-report scales in order to assess boredom are the Multidimensional State Boredom Scale (MSBS) and the Boredom Proneness Scale (BPS). Here, we present the German translations of both questionnaires and their validation. We obtained and analyzed psychometric data from more than 800 healthy individuals. We find that the German MSBS and BPS show vast congruence with their originals in respect to item statistics, internal reliability and validity. In particular, we find remarkable associations of state boredom and trait boredom with indicators of mental burden. Testing the factor structure of both questionnaires, we find supporting evidence for a 5-factor model of the MSBS, whereas the BPS in line with its original shows an irregular, inconsistent factor structure. Thus, we validate the German versions of MSBS and BPS and set a starting point for further studies of boredom in German-speaking collectives.


Asunto(s)
Tedio , Humanos , Reproducibilidad de los Resultados , Psicometría/métodos , Encuestas y Cuestionarios , Autoinforme
2.
Front Cell Neurosci ; 18: 1366200, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38584779

RESUMEN

Neural systems have evolved to process sensory stimuli in a way that allows for efficient and adaptive behavior in a complex environment. Recent technological advances enable us to investigate sensory processing in animal models by simultaneously recording the activity of large populations of neurons with single-cell resolution, yielding high-dimensional datasets. In this review, we discuss concepts and approaches for assessing the population-level representation of sensory stimuli in the form of a representational map. In such a map, not only are the identities of stimuli distinctly represented, but their relational similarity is also mapped onto the space of neuronal activity. We highlight example studies in which the structure of representational maps in the brain are estimated from recordings in humans as well as animals and compare their methodological approaches. Finally, we integrate these aspects and provide an outlook for how the concept of representational maps could be applied to various fields in basic and clinical neuroscience.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA