Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
EMBO J ; 37(6)2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29467217

RESUMEN

The chromosomal passenger complex (CPC) is directed to centromeres during mitosis via binding to H3T3ph and Sgo1. Whether and how heterochromatin protein 1α (HP1α) influences CPC localisation and function during mitotic entry is less clear. Here, we alter HP1α dynamics by fusing it to a CENP-B DNA-binding domain. Tethered HP1 strongly recruits the CPC, destabilising kinetochore-microtubule interactions and activating the spindle assembly checkpoint. During mitotic exit, the tethered HP1 traps active CPC at centromeres. These HP1-CPC clusters remain catalytically active throughout the subsequent cell cycle. We also detect interactions between endogenous HP1 and the CPC during G2 HP1α and HP1γ cooperate to recruit the CPC to active foci in a CDK1-independent process. Live cell tracking with Fab fragments reveals that H3S10ph appears well before H3T3 is phosphorylated by Haspin kinase. Our results suggest that HP1 may concentrate and activate the CPC at centromeric heterochromatin in G2 before Aurora B-mediated phosphorylation of H3S10 releases HP1 from chromatin and allows pathways dependent on H3T3ph and Sgo1 to redirect the CPC to mitotic centromeres.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Heterocromatina/metabolismo , Mitosis , Línea Celular Tumoral , Centrómero/metabolismo , Homólogo de la Proteína Chromobox 5 , Humanos , Fosforilación
2.
J Cell Sci ; 133(14)2020 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-32591481

RESUMEN

Cell division ends when two daughter cells physically separate via abscission, the cleavage of the intercellular bridge. It is not clear how the anti-parallel microtubule bundles bridging daughter cells are severed. Here, we present a novel abscission mechanism. We identified chromokinesin KIF4A, which is adjacent to the midbody during cytokinesis, as being required for efficient abscission. KIF4A is regulated by post-translational modifications. We evaluated modification of KIF4A by the ubiquitin-like protein SUMO. We mapped lysine 460 in KIF4A as the SUMO acceptor site and employed CRISPR-Cas9-mediated genome editing to block SUMO conjugation of endogenous KIF4A. Failure to SUMOylate this site in KIF4A delayed cytokinesis. SUMOylation of KIF4A enhanced the affinity for the microtubule destabilizer stathmin 1 (STMN1). We here present a new level of abscission regulation through the dynamic interactions between KIF4A and STMN1 as controlled by SUMO modification of KIF4A.


Asunto(s)
Mitosis , Estatmina , Citocinesis/genética , Proteínas de Unión al ADN , Células HeLa , Humanos , Cinesinas/genética , Proteínas Nucleares , Estatmina/genética
3.
Elife ; 122023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37552050

RESUMEN

Loss-of-function genetic tools are widely applied for validating therapeutic targets, but their utility remains limited by incomplete on- and uncontrolled off-target effects. We describe artificial RNA interference (ARTi) based on synthetic, ultra-potent, off-target-free shRNAs that enable efficient and inducible suppression of any gene upon introduction of a synthetic target sequence into non-coding transcript regions. ARTi establishes a scalable loss-of-function tool with full control over on- and off-target effects.


Asunto(s)
Interferencia de ARN , ARN Interferente Pequeño/genética
4.
J Cell Biol ; 218(12): 3912-3925, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31570499

RESUMEN

Chromosome association of the chromosomal passenger complex (CPC; consisting of Borealin, Survivin, INCENP, and the Aurora B kinase) is essential to achieve error-free chromosome segregation during cell division. Hence, understanding the mechanisms driving the chromosome association of the CPC is of paramount importance. Here using a multifaceted approach, we show that the CPC binds nucleosomes through a multivalent interaction predominantly involving Borealin. Strikingly, Survivin, previously suggested to target the CPC to centromeres, failed to bind nucleosomes on its own and requires Borealin and INCENP for its binding. Disrupting Borealin-nucleosome interactions excluded the CPC from chromosomes and caused chromosome congression defects. We also show that Borealin-mediated chromosome association of the CPC is critical for Haspin- and Bub1-mediated centromere enrichment of the CPC and works upstream of the latter. Our work thus establishes Borealin as a master regulator determining the chromosome association and function of the CPC.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromosomas/metabolismo , Nucleosomas/metabolismo , Animales , Aurora Quinasa B/metabolismo , División Celular , Centrómero/ultraestructura , Segregación Cromosómica , Células HeLa , Histonas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Cinética , Espectrometría de Masas , Microscopía Fluorescente , Mitosis , Fosforilación , Unión Proteica , Pliegue de Proteína , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Recombinantes/metabolismo , Survivin/metabolismo , Xenopus laevis
5.
Curr Biol ; 28(23): 3824-3832.e6, 2018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-30449668

RESUMEN

Distinct protein phosphorylation levels in interphase and M phase require tight regulation of Cdk1 activity [1, 2]. A bistable switch, based on positive feedback in the Cdk1 activation loop, has been proposed to generate different thresholds for transitions between these cell-cycle states [3-5]. Recently, the activity of the major Cdk1-counteracting phosphatase, PP2A:B55, has also been found to be bistable due to Greatwall kinase-dependent regulation [6]. However, the interplay of the regulation of Cdk1 and PP2A:B55 in vivo remains unexplored. Here, we combine quantitative cell biology assays with mathematical modeling to explore the interplay of mitotic kinase activation and phosphatase inactivation in human cells. By measuring mitotic entry and exit thresholds using ATP-analog-sensitive Cdk1 mutants, we find evidence that the mitotic switch displays hysteresis and bistability, responding differentially to Cdk1 inhibition in the mitotic and interphase states. Cdk1 activation by Wee1/Cdc25 feedback loops and PP2A:B55 inactivation by Greatwall independently contributes to this hysteretic switch system. However, elimination of both Cdk1 and PP2A:B55 inactivation fully abrogates bistability, suggesting that hysteresis is an emergent property of mutual inhibition between the Cdk1 and PP2A:B55 feedback loops. Our model of the two interlinked feedback systems predicts an intermediate but hidden steady state between interphase and M phase. This could be verified experimentally by Cdk1 inhibition during mitotic entry, supporting the predictive value of our model. Furthermore, we demonstrate that dual inhibition of Wee1 and Gwl kinases causes loss of cell-cycle memory and synthetic lethality, which could be further exploited therapeutically.


Asunto(s)
Ciclo Celular , Mitosis , Ciclo Celular/genética , Células HeLa , Humanos , Interfase/genética , Mitosis/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilación
6.
FEBS J ; 281(3): 787-801, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24251807

RESUMEN

The adenomatous polyposis coli (APC) membrane recruitment (Amer) family proteins Amer1/Wilms tumour gene on the X chromosome and Amer2 are binding partners of the APC tumour suppressor protein, and act as negative regulators in the Wnt signalling cascade. So far, nothing has been known about the third member of the family, Amer3. Here we show that Amer3 binds to the armadillo repeat domain of APC, similarly to Amer1 and Amer2. Amer3 also binds to the Wnt pathway regulator conductin/axin2. Furthermore, we identified Amer1 as binding partner of Amer3. Whereas Amer1 and Amer2 are linked to the plasma membrane by an N-terminal membrane localization domain, Amer3 lacks this domain. Amer3 localizes to the cytoplasm and nucleus of epithelial cells, and this is dependent on specific nuclear import and export sequences. Functionally, exogenous Amer3 enhances the expression of a ß-catenin/T-cell factor-dependent reporter gene, and knockdown of endogenous Amer3 reduces Wnt target gene expression in colorectal cancer cells. Thus, Amer3 acts as an activator of Wnt signalling, in contrast to Amer1 and Amer2, which are inhibitors, suggesting a nonredundant role of Amer proteins in the regulation of this pathway. Our data, together with those of previous studies, provide a comprehensive picture of similarities and differences within the Amer protein family.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Poliposis Adenomatosa del Colon/metabolismo , Núcleo Celular/metabolismo , Neoplasias Colorrectales/metabolismo , Citoplasma/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Regulación hacia Arriba , Vía de Señalización Wnt , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteína de la Poliposis Adenomatosa del Colon/antagonistas & inhibidores , Proteína de la Poliposis Adenomatosa del Colon/química , Proteína de la Poliposis Adenomatosa del Colon/genética , Proteínas del Dominio Armadillo/química , Proteínas del Dominio Armadillo/metabolismo , Proteína Axina/metabolismo , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Células HEK293 , Humanos , Proteínas Mutantes , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Especificidad de Órganos , Dominios y Motivos de Interacción de Proteínas , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Señales de Clasificación de Proteína , Transporte de Proteínas , Interferencia de ARN , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Supresoras de Tumor/antagonistas & inhibidores , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA