Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Am Mosq Control Assoc ; 33(3): 200-208, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28854111

RESUMEN

Insecticide-based vector control approaches are facing challenges due to the development of resistance in vector mosquitoes. Therefore, a proper resistance surveillance program using baseline lethal concentrations is crucial for resistance management strategies. Currently, the World Health Organization's (WHO) diagnostic doses established for Aedes aegypti and Anopheles species are being used to study the resistance status of Aedes albopictus. In this study, we established the diagnostic doses for permethrin, deltamethrin, and malathion using a known susceptible reference strain. Five field-collected populations were screened against these doses, following the WHO protocol. This study established the diagnostic dose of malathion at 2.4%, permethrin at 0.95%, and deltamethrin at 0.28%, which differ from the WHO doses for Aedes aegypti and Anopheles spp. Among the insecticides tested on the 5 wild populations, only deltamethrin showed high effectiveness. Different susceptibility and resistance patterns were observed with permethrin, malathion, and dichloro-diphenyl-trichloroethane (DDT) at 4%. This study may assist the health authorities to improve future chemical-based vector control operations in dengue-endemic areas.


Asunto(s)
Aedes/efectos de los fármacos , Insecticidas/farmacología , Malatión/farmacología , Control de Mosquitos , Nitrilos/farmacología , Permetrina/farmacología , Piretrinas/farmacología , Animales , Femenino , Malasia
2.
J Econ Entomol ; 109(1): 352-9, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26546486

RESUMEN

In this study, the toxicology of two commercial larvicides--cyromazine (Neporex 50SP) and ChCy (combination of chlorpyrifos and cypermethrin, Naga 505)--and five commercial adulticides--thiamethoxam (Agita 10WG), cyfluthrin (Responsar WP), lambda-cyhalothrin (Icon 2.8EC), fipronil (Regent 50SC), and imidacloprid (Toxilat 10WP)--was examined against the WHO/VCRU (World Health Organization/ Vector Control Research Unit) susceptible strain and the AYTW (Ayer Tawar) field strain of house fly, Musca domestica L. These pesticides were administered topically, in the diet, or as a dry residue treatment on plywood. Probit analysis using at least five concentrations and the concentration that was lethal to 50% (LC(50)) of the organisms was applied to compare the toxicology and resistance levels of the AYTW population to different insecticides. In the larvicide laboratory study, ChCy was more effective than cyromazine, with a significantly lower LC(50) value when administered topically or in the diet, although the AYTW population was susceptible to both larvicides with a resistance ratio (RR) <10. For the adulticide laboratory study, cyfluthrin and fipronil exhibited the lowest LC50 values of the adulticides, indicating that they are both effective at controlling adult flies, although lambda-cyhalothrin showed moderate resistance (RR = 11.60 by topical application; 12.41 by plywood treatment). Further investigation of ChCy, cyromazine, cyfluthrin, and fipronil under field conditions confirmed that ChCy and cyromazine strikingly reduced larval density, and surprisingly, ChCy also exhibited adulticidal activity, which significantly reduced adult fly numbers compared with the control group. Cyfluthrin and fipronil were also confirmed to be effective, with a significant reduction in adult fly numbers compared with the control group.


Asunto(s)
Moscas Domésticas , Resistencia a los Insecticidas , Insecticidas , Crianza de Animales Domésticos , Animales , Pollos , Vivienda para Animales , Malasia
3.
J Am Mosq Control Assoc ; 32(3): 210-216, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27802400

RESUMEN

Dengue vector control still heavily relies on the use of chemical insecticides, and the widespread use of insecticides has led to resistance in mosquitoes. The diagnostic dose is a key part of resistance monitoring. The present study corroborates the discriminating lethal doses of temephos and malathion based on dose-response of known susceptible strain of Aedes albopictus following the World Health Organization (WHO) diagnostic test procedure. Late 3rd and early 4th instars were tested with a range of larvicides to determine the lethal concentrations (LC50 and LC99) values. A slightly higher diagnostic dose of 0.020 mg/liter as compared with the WHO-established value of 0.012 mg/liter was observed for temephos. Meanwhile, a malathion diagnostic dose of 0.200 mg/liter is also reported here since there are no such reported values by WHO. Doubling the LC99 values of susceptible strains, 3 of the 5 wild-collected populations showed resistance to temephos and 2 showed incipient resistance; all 5 populations showed incipient resistance to malathion. The revised and established lethal diagnostic dose findings from the current work are crucial to elaborate on the variation in susceptibility of Ae. albopictus in future resistance monitoring programs in Malaysia.


Asunto(s)
Aedes , Resistencia a los Insecticidas , Insecticidas , Malatión , Control de Mosquitos , Temefós , Animales , Relación Dosis-Respuesta a Droga , Femenino , Malasia
4.
Parasit Vectors ; 16(1): 21, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36670470

RESUMEN

BACKGROUND: The continued spread of insecticide resistance in mosquito vectors of malaria and arboviral diseases may lead to operational failure of insecticide-based interventions if resistance is not monitored and managed efficiently. This study aimed to develop and validate a new WHO glass bottle bioassay method as an alternative to the WHO standard insecticide tube test to monitor mosquito susceptibility to new public health insecticides with particular modes of action, physical properties or both. METHODS: A multi-centre study involving 21 laboratories worldwide generated data on the susceptibility of seven mosquito species (Aedes aegypti, Aedes albopictus, Anopheles gambiae sensu stricto [An. gambiae s.s.], Anopheles funestus, Anopheles stephensi, Anopheles minimus and Anopheles albimanus) to seven public health insecticides in five classes, including pyrethroids (metofluthrin, prallethrin and transfluthrin), neonicotinoids (clothianidin), pyrroles (chlorfenapyr), juvenile hormone mimics (pyriproxyfen) and butenolides (flupyradifurone), in glass bottle assays. The data were analysed using a Bayesian binomial model to determine the concentration-response curves for each insecticide-species combination and to assess the within-bioassay variability in the susceptibility endpoints, namely the concentration that kills 50% and 99% of the test population (LC50 and LC99, respectively) and the concentration that inhibits oviposition of the test population by 50% and 99% (OI50 and OI99), to measure mortality and the sterilizing effect, respectively. RESULTS: Overall, about 200,000 mosquitoes were tested with the new bottle bioassay, and LC50/LC99 or OI50/OI99 values were determined for all insecticides. Variation was seen between laboratories in estimates for some mosquito species-insecticide combinations, while other test results were consistent. The variation was generally greater with transfluthrin and flupyradifurone than with the other compounds tested, especially against Anopheles species. Overall, the mean within-bioassay variability in mortality and oviposition inhibition were < 10% for most mosquito species-insecticide combinations. CONCLUSION: Our findings, based on the largest susceptibility dataset ever produced on mosquitoes, showed that the new WHO bottle bioassay is adequate for evaluating mosquito susceptibility to new and promising public health insecticides currently deployed for vector control. The datasets presented in this study have been used recently by the WHO to establish 17 new insecticide discriminating concentrations (DCs) for either Aedes spp. or Anopheles spp. The bottle bioassay and DCs can now be widely used to monitor baseline insecticide susceptibility of wild populations of vectors of malaria and Aedes-borne diseases worldwide.


Asunto(s)
Anopheles , Insecticidas , Malaria , Piretrinas , Animales , Femenino , Insecticidas/farmacología , Mosquitos Vectores , Salud Pública , Teorema de Bayes , Control de Mosquitos/métodos , Piretrinas/farmacología , Resistencia a los Insecticidas , Bioensayo , Organización Mundial de la Salud
5.
Sci Rep ; 12(1): 2206, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35177630

RESUMEN

Vector-borne diseases are worldwide public health issues. Despite research focused on vectorial capacity determinants in pathogen transmitting mosquitoes, their behavioural plasticity remains poorly understood. Memory and associative learning have been linked to behavioural changes in several insect species, but their relevance in behavioural responses to pesticide vector control has been largely overlooked. In this study, female Aedes aegypti and Culex quinquefasciastus were exposed to sub-lethal doses of 5 pesticide compounds using modified World Health Organization (WHO) tube bioassays. Conditioned females, subsequently exposed to the same pesticides in WHO tunnel assays, exhibited behavioural avoidance by forgoing blood-feeding to ensure survival. Standardized resting site choice tests showed that pre-exposed females avoided the pesticides smell and choose to rest in a pesticide-free compartment. These results showed that, following a single exposure, mosquitoes can associate the olfactory stimulus of pesticides with their detrimental effects and subsequently avoid pesticide contact. Findings highlight the importance of mosquito cognition as determinants of pesticide resistance in mosquito populations targeted by chemical control.


Asunto(s)
Anopheles/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Repelentes de Insectos/farmacología , Mosquitos Vectores/efectos de los fármacos , Aedes/efectos de los fármacos , Aedes/patogenicidad , Animales , Anopheles/fisiología , Bioensayo , Culex/efectos de los fármacos , Culex/patogenicidad , Culicidae/efectos de los fármacos , Culicidae/patogenicidad , Humanos , Insecticidas/farmacología , Mosquitos Vectores/genética , Mosquitos Vectores/fisiología , Organización Mundial de la Salud
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA