Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Chembiochem ; : e202400279, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38776258

RESUMEN

Bacteria use specialized proteins, like transcription factors, to rapidly control metal ion balance. CueR is a Gram-negative bacterial copper regulator. The structure of E. coli CueR complexed with Cu(I) and DNA was published, since then many studies have shed light on its function. However, P. aeruginosa CueR, which shows high sequence similarity to E. coli CueR, has been less studied. Here, we applied room-temperature electron paramagnetic resonance (EPR) measurements to explore changes in dynamics of P. aeruginosa CueR in dependency of copper concentrations and interaction with two different DNA promoter regions. We showed that P. aeruginosa CueR is less dynamic than the E. coli CueR protein and exhibits much higher sensitivity to DNA binding as compared to its E. coli CueR homologue. Moreover, a difference in dynamical behavior was observed when P. aeruginosa CueR binds to the copZ2 DNA promoter sequence compared to the mexPQ-opmE promoter sequence. Such dynamical differences may affect the expression levels of CopZ2 and MexPQ-OpmE proteins in P. aeruginosa. Overall, such comparative measurements of protein-DNA complexes derived from different bacterial systems reveal insights about how structural and dynamical differences between two highly homologous proteins lead to quite different DNA sequence-recognition and mechanistic properties.

2.
Biochemistry ; 62(3): 797-807, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36691693

RESUMEN

Metal transcription factors regulate metal concentrations in eukaryotic and prokaryotic cells. Copper is a metal ion that is being tightly regulated, owing to its dual nature. Whereas copper is an essential nutrient for bacteria, it is also toxic at high concentrations. CopY is a metal-sensitive transcription factor belonging to the copper-responsive repressor family found in Gram-positive bacteria. CopY represses transcription in the presence of Zn(II) ions and initiates transcription in the presence of Cu(I) ions. The complete crystal structure of CopY has not been reported yet, therefore most of the structural information on this protein is based on its similarity to the well-studied MecI protein. In this study, electron paramagnetic resonance (EPR) spectroscopy was used to characterize structural and local dynamical changes in Streptococcus pneumoniae CopY as a function of Zn(II), Cu(I), and DNA binding. We detected different conformations and changes in local dynamics when CopY bound Zn(II), as opposed to Cu(I) ions. Furthermore, we explored the effects of metal ions and DNA on CopY conformation. Our results revealed the sensitivity and selectivity of CopY towards metal ions and provide new insight into the structural mechanism of the CopY transcription factor.


Asunto(s)
Cobre , Metales , Espectroscopía de Resonancia por Spin del Electrón , Cobre/metabolismo , Factores de Transcripción , Iones
3.
Biophys J ; 121(7): 1194-1204, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35202609

RESUMEN

Abnormal cellular copper levels have been clearly implicated in genetic diseases, cancer, and neurodegeneration. Ctr1, a high-affinity copper transporter, is a homotrimeric integral membrane protein that provides the main route for cellular copper uptake. Together with a sophisticated copper transport system, Ctr1 regulates Cu(I) metabolism in eukaryotes. Despite its pivotal role in normal cell function, the molecular mechanism of copper uptake and transport via Ctr1 remains elusive. In this study, electron paramagnetic resonance (EPR), UV-visible spectroscopy, and all-atom simulations were employed to explore Cu(I) binding to full-length human Ctr1 (hCtr1), thereby elucidating how metal binding at multiple distinct sites affects the hCtr1 conformational dynamics. We demonstrate that each hCtr1 monomer binds up to five Cu(I) ions and that progressive Cu(I) binding triggers a marked structural rearrangement in the hCtr1 C-terminal region. The observed Cu(I)-induced conformational remodeling suggests that the C-terminal region may play a dual role, serving both as a channel gate and as a shuttle mediating the delivery of copper ions from the extracellular hCtr1 selectivity filter to intracellular metallochaperones. Our findings thus contribute to a more complete understanding of the mechanism of hCtr1-mediated Cu(I) uptake and provide a conceptual basis for developing mechanism-based therapeutics for treating pathological conditions linked to de-regulated copper metabolism.


Asunto(s)
Proteínas de Transporte de Catión , Proteínas Transportadoras de Cobre , Transportador de Cobre 1 , Cobre , Cobre/química , Cobre/metabolismo , Proteínas Transportadoras de Cobre/química , Proteínas Transportadoras de Cobre/metabolismo , Transportador de Cobre 1/química , Transportador de Cobre 1/metabolismo , Humanos , Iones/química , Iones/metabolismo
4.
J Am Chem Soc ; 144(26): 11553-11557, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35749268

RESUMEN

The pathogen Bordetella pertussis uses a type-3 secretion system (T3SS) to inject its cytotoxic effector BteA into the host cell via a designated needle structure. Prior to injection BteA is bound to its cognate chaperone BtcA presumed to assist in effector unfolding en route to needle passage. We utilized NMR and EPR spectroscopy to uncover the molecular mechanism of BtcA-mediated unfolding of BteA. BtcA induces a global structural change in the effector, which adopts a more extended and partially unfolded conformation. EPR distance measurements further show that the structured helical-bundle form of free BteA exists in conformational equilibrium with a lowly populated minor species. The nature of this equilibrium was probed using NMR relaxation dispersion experiments. At 283 K structural effects are most pronounced for a contiguous surface spanning the A- and B-helices of BteA, extending at 303 K to a second surface including the D- and E-helices. Residues perturbed in the minor conformation coincide with those exhibiting a BtcA-induced increase in flexibility, identifying this conformation as the BtcA-bound form of the effector. Our findings hint at a conformational-selectivity mechanism for the chaperone interaction with the effector, a paradigm that may be common to effector-chaperones secretion complexes in this family of pathogens.


Asunto(s)
Proteínas Bacterianas , Bordetella pertussis , Proteínas Bacterianas/química , Bordetella pertussis/metabolismo , Espectroscopía de Resonancia Magnética , Chaperonas Moleculares/metabolismo , Desplegamiento Proteico , Sistemas de Secreción Tipo III/química
5.
Phys Chem Chem Phys ; 24(19): 11696-11703, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35506456

RESUMEN

The modification of nitrogen-contaminated diamonds into color-enhanced diamonds is usually achieved by irradiation and thermal treatment (annealing). These treatments affect nitrogen contamination chemical bonding, vacancy concentration, and atom orientation centers in the diamond lattice. In this study, natural diamonds were subjected to irradiation and thermal annealing color enhancement treatments to produce green, blue, and yellow fancy diamonds. The study followed the changes that occur during treatment relying on visual assessment, fluorescence, UV-vis, FTIR, and EPR spectroscopy to characterize paramagnetic centers. The results indicated that diamonds containing high levels of nitrogen contamination presented a relatively high carbon-centered radical concentration. Two paramagnetic groups with different g-values were found, namely, low g-value centers of 2.0017-2.0027 and high g-value centers of 2.0028-2.0035. It is suggested that the 2.0017-2.0022 centers correlate with blue centers, whereas the 2.0023-2.0027 centers correlate with yellow centers. It was also found that thermal treatment was required to produce blue and yellow fancy diamonds, whereas no such treatment was needed to produce green diamonds.


Asunto(s)
Carbono , Diamante , Diamante/química , Espectroscopía de Resonancia por Spin del Electrón , Nitrógeno/química
6.
J Am Chem Soc ; 143(43): 17875-17890, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34664948

RESUMEN

Distance distribution information obtained by pulsed dipolar EPR spectroscopy provides an important contribution to many studies in structural biology. Increasingly, such information is used in integrative structural modeling, where it delivers unique restraints on the width of conformational ensembles. In order to ensure reliability of the structural models and of biological conclusions, we herein define quality standards for sample preparation and characterization, for measurements of distributed dipole-dipole couplings between paramagnetic labels, for conversion of the primary time-domain data into distance distributions, for interpreting these distributions, and for reporting results. These guidelines are substantiated by a multi-laboratory benchmark study and by analysis of data sets with known distance distribution ground truth. The study and the guidelines focus on proteins labeled with nitroxides and on double electron-electron resonance (DEER aka PELDOR) measurements and provide suggestions on how to proceed analogously in other cases.


Asunto(s)
Óxidos N-Cíclicos/química , Espectroscopía de Resonancia por Spin del Electrón/normas , Proteínas/química , Marcadores de Spin , Benchmarking , Espectroscopía de Resonancia por Spin del Electrón/métodos , Reproducibilidad de los Resultados
7.
Int J Mol Sci ; 22(4)2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33669570

RESUMEN

Thirty-five thousand people die as a result of more than 2.8 million antibiotic-resistant infections in the United States of America per year. Pseudomonas aeruginosa (P. aeruginosa) is classified a serious threat, the second-highest threat category of the U.S. Department of Health and Human Services. Among others, the World Health Organization (WHO) encourages the discovery and development of novel antibiotic classes with new targets and mechanisms of action without cross-resistance to existing classes. To find potential new target sites in pathogenic bacteria, such as P. aeruginosa, it is inevitable to fully understand the molecular mechanism of homeostasis, metabolism, regulation, growth, and resistances thereof. P. aeruginosa maintains a sophisticated copper defense cascade comprising three stages, resembling those of public safety organizations. These stages include copper scavenging, first responder, and second responder. Similar mechanisms are found in numerous pathogens. Here we compare the copper-dependent transcription regulators cueR and copRS of Escherichia coli (E. coli) and P. aeruginosa. Further, phylogenetic analysis and structural modelling of mexPQ-opmE reveal that this efflux pump is unlikely to be involved in the copper export of P. aeruginosa. Altogether, we present current understandings of the copper homeostasis in P. aeruginosa and potential new target sites for antimicrobial agents or a combinatorial drug regimen in the fight against multidrug resistant pathogens.


Asunto(s)
Cobre/metabolismo , Homeostasis , Pseudomonas aeruginosa/metabolismo , Antiinfecciosos/farmacología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Transporte Biológico/efectos de los fármacos , Cobre/farmacología , Homeostasis/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos
8.
Int J Mol Sci ; 21(15)2020 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-32748830

RESUMEN

Copper's essentiality and toxicity mean it requires a sophisticated regulation system for its acquisition, cellular distribution and excretion, which until now has remained elusive. Herein, we applied continuous wave (CW) and pulsed electron paramagnetic resonance (EPR) spectroscopy in solution to resolve the copper trafficking mechanism in humans, by considering the route travelled by Cu(I) from the metallochaperone Atox1 to the metal binding domains of ATP7B. Our study revealed that Cu(I) is most likely mediated by the binding of the Atox1 monomer to metal binding domain 1 (MBD1) and MBD4 of ATP7B in the final part of its extraction pathway, while the other MBDs mediate this interaction and participate in copper transfer between the various MBDs to the ATP7B membrane domain. This research also proposes that MBD1-3 and MBD4-6 act as two independent units.


Asunto(s)
Proteínas Transportadoras de Cobre/metabolismo , ATPasas Transportadoras de Cobre/metabolismo , Cobre/metabolismo , Espectroscopía de Resonancia por Spin del Electrón/métodos , Chaperonas Moleculares/metabolismo , Sitios de Unión , Cobre/química , Proteínas Transportadoras de Cobre/química , ATPasas Transportadoras de Cobre/química , Humanos , Modelos Moleculares , Chaperonas Moleculares/química , Unión Proteica , Dominios Proteicos
9.
Angew Chem Int Ed Engl ; 59(47): 20924-20929, 2020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-32776435

RESUMEN

Many inorganic materials can form crystals, but little is known about their enantioselective crystallization. Herein, we report on the enantioselective crystallization of ϵ-Zn(OH)2 (Wulfingite) chiral crystals by using amino acids. Crystals of ϵ-Zn(OH)2 were crystallized from supersaturated sodium hydroxide and zinc nitrate aqueous solutions in the presence of l- or d-arginine. All of the chiral measurements, such as selective chiral adsorption by circular dichroism (CD), chiral chromatography, and polarimetry measurements, clearly show chiral discrimination during the crystallization of ϵ-Zn(OH)2 . In addition, a new method has been developed for identifying chirality in crystals by using electron paramagnetic resonance (EPR). Although the values of chiral induction of the ϵ-Zn(OH)2 crystals obtained are somewhat low, these values are still significant because they demonstrate that enantioselectivity during the crystallization of chiral inorganic crystals with chiral additives can be achieved. The method can be applied to many chiral inorganic systems. Understanding and controlling the crystallization of chiral inorganic crystals is important for gaining knowledge on the interaction of chiral molecules with inorganic surfaces. This knowledge can lead to an understanding of basic scientific questions such as the evolution of homochirality in biomolecules and the development of chiral inorganic crystals for a variety of purposes such as asymmetric catalysis and optical applications.

10.
Chembiochem ; 20(6): 813-821, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30565824

RESUMEN

The bacterial potassium channel KcsA is gated by pH, opening for conduction under acidic conditions. Molecular determinants responsible for this effect have been identified at the extracellular selectivity filter, at the membrane-cytoplasm interface (TM2 gate), and in the cytoplasmic C-terminal domain (CTD), an amphiphilic four-helix bundle mediated by hydrophobic and electrostatic interactions. Here we have employed NMR and EPR to provide a structural view of the pH-induced open-to-closed CTD transition. KcsA was embedded in lipoprotein nanodiscs (LPNs), selectively methyl-protonated at Leu/Val residues to allow observation of both states by NMR, and spin-labeled for the purposes of EPR studies. We observed a pHinduced structural change between an associated structured CTD at neutral pH and a dissociated flexible CTD at acidic pH, with a transition in the 5.0-5.5 range, consistent with a stabilization of the CTD by channel architecture. A double mutant constitutively open at the TM2 gate exhibited reduced stability of associated CTD, as indicated by weaker spin-spin interactions, a shift to higher transition pH values, and a tenfold reduction in the population of the associated "closed" channels. We extended these findings for isolated CTD-derived peptides to full-length KcsA and have established a contribution of the CTD to KcsA pH-controlled gating, which exhibits a strong correlation with the state of the proximal TM2 gate.


Asunto(s)
Proteínas Bacterianas/metabolismo , Activación del Canal Iónico , Lipoproteínas/química , Nanoestructuras/química , Canales de Potasio/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Dimiristoilfosfatidilcolina/química , Espectroscopía de Resonancia por Spin del Electrón , Concentración de Iones de Hidrógeno , Mutación , Resonancia Magnética Nuclear Biomolecular , Canales de Potasio/química , Canales de Potasio/genética , Dominios Proteicos
11.
Int J Mol Sci ; 20(14)2019 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-31337158

RESUMEN

Appropriate maintenance of Cu(I) homeostasis is an essential requirement for proper cell function because its misregulation induces the onset of major human diseases and mortality. For this reason, several research efforts have been devoted to dissecting the inner working mechanism of Cu(I)-binding proteins and transporters. A commonly adopted strategy relies on mutations of cysteine residues, for which Cu(I) has an exquisite complementarity, to serines. Nevertheless, in spite of the similarity between these two amino acids, the structural and functional impact of serine mutations on Cu(I)-binding biomolecules remains unclear. Here, we applied various biochemical and biophysical methods, together with all-atom simulations, to investigate the effect of these mutations on the stability, structure, and aggregation propensity of Cu(I)-binding proteins, as well as their interaction with specific partner proteins. Among Cu(I)-binding biomolecules, we focused on the eukaryotic Atox1-ATP7B system, and the prokaryotic CueR metalloregulator. Our results reveal that proteins containing cysteine-to-serine mutations can still bind Cu(I) ions; however, this alters their stability and aggregation propensity. These results contribute to deciphering the critical biological principles underlying the regulatory mechanism of the in-cell Cu(I) concentration, and provide a basis for interpreting future studies that will take advantage of cysteine-to-serine mutations in Cu(I)-binding systems.


Asunto(s)
Sustitución de Aminoácidos , ATPasas Transportadoras de Cobre/química , ATPasas Transportadoras de Cobre/metabolismo , Cisteína/genética , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutación , Serina/genética , ATPasas Transportadoras de Cobre/genética , Humanos , Metalochaperonas/química , Metalochaperonas/genética , Metalochaperonas/metabolismo , Modelos Moleculares , Conformación Proteica , Análisis Espectral , Relación Estructura-Actividad
12.
Angew Chem Int Ed Engl ; 58(10): 3053-3056, 2019 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-30566257

RESUMEN

The interactions between proteins and their specific DNA sequences are the basis of many cellular processes. Hence, developing methods to build an atomic level picture of these interactions helps improve our understanding of key cellular mechanisms. CueR is an Escherichia coli copper-sensing transcription regulator. The inhibition of copper-sensing transcription regulators can kill pathogens, without harming the host. Several spectroscopic studies and crystallographic data have suggested that changes in the conformation of both the DNA and the protein control transcription. However, due to the inadequate resolution of these methods, the exact number of active conformations of CueR has not been determined. Resolving the structure of CueR in its active state is highly important for the development of specific inhibitors. Herein, the potential of double-histidine (dHis)-based CuII spin labeling for the identification of various conformational states of CueR during transcription is shown.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Transactivadores/metabolismo , Sitios de Unión , Cobre/metabolismo , ADN Bacteriano/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Escherichia coli/química , Proteínas de Escherichia coli/química , Modelos Moleculares , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Transactivadores/química
13.
Phys Chem Chem Phys ; 20(42): 27025-27035, 2018 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-30328847

RESUMEN

Coal exposed to an air atmosphere absorbs the atmospheric oxygen; this involves physical adsorption and chemisorption to form surface oxides (including hydro-peroxides). These weathering processes, which are denoted as LTO (Low Temperature Oxidation), decrease the calorific value of the coal and emit different gases such as carbon oxides (CO, CO2), water vapor, hydrogen (H2), and also some low-molecular-weight organic gases (C1-5). Some of these gases are toxic and flammable. The mechanism by which the molecular oxygen interacts with the coal macromolecule is thought to occur in several steps. The main concept is that a chain of radical reactions takes place; however, the exact underlying mechanism is not yet clear. We succeeded in identifying various carbon-centered radical species, depending on the coal rank and the degree of oxidation and suggested a new scheme for the formation of radicals via the coal oxidation process.

14.
Biophys J ; 112(12): 2494-2502, 2017 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-28636907

RESUMEN

Bacterial cells have developed sophisticated systems to deal with the toxicity of metal ions. Escherichia coli CusCFBA is a complex efflux system, responsible for transferring Cu(I) and Ag(I) ions; this system, located in the periplasm, involves four proteins, CusA, CusB, CusC, and CusF. CusA, CusB, and CusC are connected to one another in an oligomerization ratio of 3:6:3 CusA/CusB/CusC to form the CusCBA periplasm membrane transporter. CusB is an adaptor protein that connects the two membrane proteins CusA (inner membrane) and CusC (outer membrane). CusF is a metallochaperone that transfers Cu(I) and Ag(I) to the CusCBA transporter from the periplasm. The crystal structures of CusB, CusC, CusF, and the CusBA complex have been resolved, shedding some light on the efflux mechanism underlying this intriguing system. However, since CusB is an adaptor protein, its role in operating this system is significant, and should be understood in detail. Here, we utilize EPR spectroscopy to target the conformational changes that take place in the full CusB protein upon binding Cu(I). We reveal that CusB is a dimer in solution, and that the orientation of one molecule with respect to the other molecule changes upon Cu(I) coordination, resulting in a more compact CusB structure. These structural and topological changes upon Cu(I) binding probably play the role of a switch for opening the channel and transferring metal ions from CusB to CusC and out of the cell.


Asunto(s)
Cobre/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Dicroismo Circular , Cobre/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Electroforesis en Gel de Poliacrilamida , Escherichia coli , Proteínas de Escherichia coli/genética , Fusión de Membrana , Proteínas de Transporte de Membrana/genética , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Soluciones
15.
Anal Chem ; 88(8): 4440-7, 2016 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-27018717

RESUMEN

Manganese dissolution from positive electrodes significantly reduces the durability of lithium-ion batteries. Knowledge of dissolution rates and oxidation states of manganese ions is essential for designing effective mitigation measures for this problem. We show that electron paramagnetic resonance (EPR) combined with atomic absorption spectroscopy (AAS) or inductively coupled plasma (ICP) can determine both manganese dissolution rates and relative Mn(3+) amounts, by comparing the correlation between EPR and AAS/ICP data for Mn(2+) standards with that for samples containing manganese cations dissolved from active materials (LiMn2O4 (LMO) and LiNi(0.5)Mn(1.5)O4 (LNMO)) into the same electrolyte solution. We show that Mn(3+), and not Mn(2+), is the dominant species dissolved from LMO, while Mn(2+) is predominant for LNMO. Although the dissolution rate of LMO varies significantly for the two investigated materials, due to particle morphology and the presence of Cr in one of them, the Mn speciation appears independent of such details. Thus, the relative abundance of dissolved manganese ions in various oxidation states depends mainly on the overall chemical identity of the active material (LMO vs LNMO). We demonstrate the relevance of our methodology for practical batteries with data for graphite-LMO cells after high-temperature cycling or stand at 4.2 V.

16.
Langmuir ; 32(19): 4935-44, 2016 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-27104367

RESUMEN

Metal organic frameworks (MOFs) have unique properties that make them excellent candidates for many high-tech applications. Nevertheless, their nonconducting character is an obstacle to their practical utilization in electronic and energy systems. Using the familiar HKUST-1 MOF as a model, we present a new method of imparting electrical conductivity to otherwise nonconducting MOFs by preparing MOF nanoparticles within the conducting matrix of mesoporous activated carbon (AC). This composite material was studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), gas adsorption measurements, and electron paramagnetic resonance (EPR) spectroscopy. We show that MOF nanoparticles grown within the carbon matrix maintain their crystalline characteristics and their surface area. Surprisingly, as a result of the composition process, EPR measurements revealed a copper signal that had not yet been achieved. For the first time, we could analyze the complex EPR response of HKUST-1. We demonstrate the high conductivity of the MOF composite and discuss various factors that are responsible for these results. Finally, we present an optional application for using the conductive MOF composite as a high-performance electrode for pseudocapacitors.

17.
Langmuir ; 32(44): 11672-11680, 2016 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-27728764

RESUMEN

The oxidation level and properties of reduced graphene oxides (rGOs) were fine-tuned using temperature-programmed reductive annealing. rGOs were annealed at different temperatures (from 500 to 1000 °C) in hydrogen to modulate their oxidation levels. The surface of the rGOs was fully characterized using electron paramagnetic resonance backed by Raman, X-ray diffraction, and chemical analysis measurements. These experiments were used to study the changes in the surface of the rGO, its surface functionalities, and its defects as a function of the reduction temperature. In addition, electrochemical measurements to quantify the oxidation level of the rGOs offer a simple tool to correlate the properties of rGOs with their structure. Finally, we explored the effect of different levels of reduction on conductivity, capacitance, and surface reactivity. This research offers simple methodological techniques and routes to control and characterize the oxidation level of bulk quantities of rGO.

18.
Phys Chem Chem Phys ; 18(27): 18614, 2016 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-27327653

RESUMEN

Correction for 'Gd(iii)-Gd(iii) EPR distance measurements - the range of accessible distances and the impact of zero field splitting' by Arina Dalaloyan et al., Phys. Chem. Chem. Phys., 2015, 17, 18464-18476.

19.
Acc Chem Res ; 47(2): 688-95, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24289139

RESUMEN

The use of pulsed electron spin resonance (ESR) to measure interspin distance distributions has advanced biophysical research. The three major techniques that use pulsed ESR are relaxation rate based distance measurements, double quantum coherence (DQC), and double electron electron resonance (DEER). Among these methods, the DEER technique has become particularly popular largely because it is easy to implement on commercial instruments and because programs are available to analyze experimental data. Researchers have widely used DEER to measure the structure and conformational dynamics of molecules labeled with the methanethiosulfonate spin label (MTSSL). Recently, researchers have exploited endogenously bound paramagnetic metal ions as spin probes as a way to determine structural constraints in metalloproteins. In this context Cu(2+) has served as a useful paramagnetic metal probe at X-band for DEER based distance measurements. Sample preparation is simple, and a coordinated-Cu(2+) ion offers limited spatial flexibility, making it an attractive probe for DEER experiments. On the other hand, Cu(2+) has a broad absorption ESR spectrum at low temperature, which leads to two potential complications. First, the Cu(2+)-based DEER time domain data has lower signal to noise ratio compared with MTSSL. Second, accurate distance distribution analysis often requires high-quality experimental data at different external magnetic fields or with different frequency offsets. In this Account, we summarize characteristics of Cu(2+)-based DEER distance distribution measurements and data analysis methods. We highlight a novel application of such measurements in a protein-DNA complex to identify the metal ion binding site and to elucidate its chemical mechanism of function. We also survey the progress of research on other metal ions in high frequency DEER experiments.

20.
J Biol Inorg Chem ; 20(8): 1253-61, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26531103

RESUMEN

C. elegans is a heme auxotroph that requires environmental heme for sustenance. As such, worms utilize HRG-3, a small heme-trafficking protein, to traffic heme from the intestine to extra-intestinal tissues and embryos. However, how HRG-3 binds and delivers heme remains unknown. In this study, we utilized electron paramagnetic resonance spectroscopy together with site-directed spin labeling, absorption spectroscopy, circular dichroism, and mutagenesis to gain structural and molecular insights into HRG-3. We showed that HRG-3 is a dimer, whereas H9 and H10 are significant residues that preserve a specific conformational state in the HRG-3 dimer. In the absence of H9 and H10, HRG-3 can still bind heme, although with a different affinity. Furthermore, the heme-binding site is closer to the N-termini than to the C-termini. Taken together, our results lay the groundwork for future mechanistic and structural studies of HRG-3 and inter-tissue heme trafficking in metazoans.


Asunto(s)
Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Hemoproteínas/química , Hemoproteínas/metabolismo , Histidina/química , Histidina/metabolismo , Animales , Caenorhabditis elegans/química , Dicroismo Circular , Espectroscopía de Resonancia por Spin del Electrón , Electroforesis en Gel de Poliacrilamida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA