Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neurobiol Learn Mem ; 196: 107696, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36368635

RESUMEN

OBJECTIVE: Experience-dependent modulation of the visual evoked potential (VEP) has emerged as a promising non-invasive proxy for assaying long term potentiation (LTP)-like plasticity in the cerebral cortex. LTP is considered the principal candidate mechanism underlying learning and memory. There is, however, a paucity of evidence exploring associations between LTP-like plasticity and performance-based learning and memory. The present study aimed to explore the relationship between VEP-plasticity and higher-order learning and memory in healthy adults. METHOD: Visual and verbal learning and memory was assessed using the Aggie Figures Learning Test (AFLT) and the Rey Auditory Verbal Learning Test (RAVLT). The study included 111 healthy adults (61.1% females; mean age 37.6 years, range 17-71) who underwent a VEP paradigm employing visual high-frequency stimulation to induce a change in visual evoked responses recorded by scalp EEG. In addition, a more comprehensive neuropsychological assessment was administered. RESULTS: Several significant moderate age-corrected positive correlations were found between modulation of the later VEP components (N1 and P1-N1 peak-to-peak) and both visual and verbal learning and memory performance. Further, there were significant differences in learning and memory performance between participants showing a higher degree of modulation (>1 SD above mean) compared to participants showing a lower degree of modulation. No significant associations were found between VEP-plasticity and other neurocognitive domains. CONCLUSIONS: The current results suggest that LTP-like plasticity indexed by VEP modulation reflect processes specific to learning and memory. Future research is needed to further delineate the complex relationship between neural plasticity and learning and memory, specifically concerning possible clinical implications in populations with deficits in learning and memory function.


Asunto(s)
Potenciales Evocados Visuales , Potenciación a Largo Plazo , Adulto , Femenino , Humanos , Adolescente , Adulto Joven , Persona de Mediana Edad , Anciano , Masculino , Potenciación a Largo Plazo/fisiología , Plasticidad Neuronal/fisiología , Electroencefalografía , Estimulación Luminosa
2.
Eur J Neurosci ; 53(4): 1072-1085, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32897598

RESUMEN

Stimulus response modulation (SRM) of sensory evoked potentials represents a promising method as a non-invasive index of long-term potentiation (LTP)-like synaptic plasticity in the human sensory cortices. As of today, however, no consensus exists regarding which experimental parameters elicit the most robust SRM response. The aim of the current study was twofold; firstly, we aimed to replicate former studies demonstrating visual SRM in healthy adults. Second, we integrated visual and auditory stimuli within the same SRM recording session to assay potential cross-modal associations. Such an association between modalities would strengthen the assumption that the SRM effect reflects common mechanisms underlying synaptic plasticity rather than reflecting modality-specific phenomena. A replication of previous findings showing robust potentiation of the visual evoked potential was evident, supporting the majority of previous work using similar paradigms, lending further support to the notion that high-frequent visual stimulation is a viable probe into LTP-like synaptic plasticity in the human visual cortex. The auditory evoked potentials (AEPs) did not, however, fully replicate previous work, though a significant increase of temporally later AEP components was found. In contrast to our hypothesis, there were no significant within-subject cross-modality correlations between the visual and auditory SRM. This lack of significant association might suggest that auditory and visual SRM depend on different mechanisms, and that further SRM studies on non-invasive LTP-like synaptic plasticity should focus on optimizing paradigms within the visual modality.


Asunto(s)
Potenciales Evocados Visuales , Neocórtex , Adulto , Potenciales Evocados Auditivos , Humanos , Potenciación a Largo Plazo , Plasticidad Neuronal
3.
Data Brief ; 45: 108647, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36425964

RESUMEN

Electroencephalography (EEG) offers a unique window into the dynamics of the neuronal symphony that powers our brains. Here, we describe a publicly available dataset of EEG recorded from 111 healthy subjects. The data were recorded with 64 electrodes in a resting-state condition, an approach that offers broad-spectred analysis options, including functional connectivity and graph theory. In a subset of the subjects (n = 42), a second EEG recording was performed, 2-3 months after the initial recording, allowing measurement stability to be assessed. Furthermore, in connection with the EEG acquisition, a range of neuropsychological test scores were obtained for each subject. The dataset is comprehensive and organised according to the Brain Imaging Data Structure (BIDS) specification, providing a valuable starting point for both aspiring and experienced researchers in a range of fields, including cognitive neuroscience, data science, machine learning, and clinical neurophysiology.

4.
Front Hum Neurosci ; 16: 867675, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35601905

RESUMEN

Long-term potentiation (LTP) is one of the most extensively studied forms of neuroplasticity and is considered the strongest candidate mechanism for memory and learning. The use of event-related potentials and sensory stimulation paradigms has allowed for the translation from animal studies to non-invasive studies of LTP-like synaptic plasticity in humans. Accumulating evidence suggests that synaptic plasticity as measured by stimulus-specific response modulation is reduced in neuropsychiatric disorders such as major depressive disorder (MDD), bipolar disorders and schizophrenia, suggesting that impaired synaptic plasticity plays a part in the underlying pathophysiology of these disorders. This is in line with the neuroplasticity hypothesis of depression, which postulate that deficits in neuroplasticity might be a common pathway underlying depressive disorders. The current study aims to replicate and confirm earlier reports that visual stimulus-specific response modulation is a viable probe into LTP-like synaptic plasticity in a large sample of healthy adults (n = 111). Further, this study explores whether impairments in LTP-like synaptic plasticity is associated with self-reported subclinical depressive symptoms and stress in a healthy population. Consistent with prior research, the current study replicated and confirmed reports demonstrating significant modulation of visual evoked potentials (VEP) following visual high-frequency stimulation. Current results further indicate that reduced LTP-like synaptic plasticity is associated with higher levels of self-reported symptoms of depression and perceived stress. This indicate that LTP-like plasticity is sensitive to sub-clinical levels of psychological distress, and might represent a vulnerability marker for the development of depressive symptoms.

5.
Mov Disord Clin Pract ; 9(1): 48-59, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35005065

RESUMEN

BACKGROUND: In Parkinson's disease (PD) long-term motor outcomes of subthalamic nucleus deep brain stimulation (STN-DBS) are well documented, while comprehensive reports on non-motor outcomes are fewer and less consistent. OBJECTIVE: To report motor and non-motor symptoms after 5-years of STN-DBS. METHODS: We performed an open 5-year extension study of a randomized trial that compared intraoperative verification versus mapping of STN using microelectrode recordings. Changes from preoperative to 5-years of STN-DBS were evaluated for motor and non-motor symptoms (MDS-UPDRS I-IV), sleep disturbances (PDSS), autonomic symptoms (Scopa-Aut), quality of life (PDQ-39) and cognition through a neuropsychological test battery. We evaluated whether any differences between the two randomization groups were still present, and assessed preoperative predictors of physical dependence after 5 years of treatment using logistic regression. RESULTS: We found lasting improvement of off-medication motor symptoms (total MDS-UPDRS III, bradykinetic-rigid symptoms and tremor), on-medication tremor, motor fluctuations, and sleep disturbances, but reduced performance across all cognitive domains, except verbal memory. Reduction of verbal fluency and executive function was most pronounced the first year and may thus be more directly related to the surgery than worsening in other domains. The group mapped with multiple microelectrode recordings had more improvement of bradykinetic-rigid symptoms and of PDQ-39 bodily discomfort sub-score, but also more reduction in word fluency. Older age was the most important factor associated with physical dependence after 5 years. CONCLUSION: STN-DBS offers good long-term effects, including improved sleep, despite disease progression. STN-DBS surgery may negatively impact verbal fluency and executive function.

6.
Front Hum Neurosci ; 15: 684573, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34248528

RESUMEN

OBJECTIVE: Stimulus-selective response modulation (SRM) of sensory evoked potentials represents a well-established non-invasive index of long-term potentiation-like (LTP-like) synaptic plasticity in the human sensory cortices. Although our understanding of the mechanisms underlying stimulus-SRM has increased over the past two decades, it remains unclear how this form of LTP-like synaptic plasticity is related to other basic learning mechanisms, such as perceptual learning. The aim of the current study was twofold; firstly, we aimed to corroborate former stimulus-SRM studies, demonstrating modulation of visual evoked potential (VEP) components following high-frequency visual stimulation. Secondly, we aimed to investigate the association between the magnitudes of LTP-like plasticity and visual perceptual learning (VPL). METHODS: 42 healthy adults participated in the study. EEG data was recorded during a standard high-frequency stimulus-SRM paradigm. Amplitude values were measured from the peaks of visual components C1, P1, and N1. Embedded in the same experimental session, the VPL task required the participants to discriminate between a masked checkerboard pattern and a visual "noise" stimulus before, during and after the stimulus-SRM probes. RESULTS: We demonstrated significant amplitude modulations of VEPs components C1 and N1 from baseline to both post-stimulation probes. In the VPL task, we observed a significant change in the average threshold levels from the first to the second round. No significant association between the magnitudes of LTP-like plasticity and performance on the VPL task was evident. CONCLUSION: To the extent of our knowledge, this study is the first to examine the relationship between the visual stimulus-RM phenomenon and VPL in humans. In accordance with previous studies, we demonstrated robust amplitude modulations of the C1 and N1 components of the VEP waveform. However, we did not observe any significant correlations between modulation magnitude of VEP components and VPL task performance, suggesting that these phenomena rely on separate learning mechanisms implemented by different neural mechanisms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA