Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Cell ; 184(13): 3376-3393.e17, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34043940

RESUMEN

We present a global atlas of 4,728 metagenomic samples from mass-transit systems in 60 cities over 3 years, representing the first systematic, worldwide catalog of the urban microbial ecosystem. This atlas provides an annotated, geospatial profile of microbial strains, functional characteristics, antimicrobial resistance (AMR) markers, and genetic elements, including 10,928 viruses, 1,302 bacteria, 2 archaea, and 838,532 CRISPR arrays not found in reference databases. We identified 4,246 known species of urban microorganisms and a consistent set of 31 species found in 97% of samples that were distinct from human commensal organisms. Profiles of AMR genes varied widely in type and density across cities. Cities showed distinct microbial taxonomic signatures that were driven by climate and geographic differences. These results constitute a high-resolution global metagenomic atlas that enables discovery of organisms and genes, highlights potential public health and forensic applications, and provides a culture-independent view of AMR burden in cities.


Asunto(s)
Farmacorresistencia Bacteriana/genética , Metagenómica , Microbiota/genética , Población Urbana , Biodiversidad , Bases de Datos Genéticas , Humanos
2.
Nature ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862028

RESUMEN

Spaceflight induces molecular, cellular, and physiological shifts in astronauts and poses myriad biomedical challenges to the human body, which are becoming increasingly relevant as more humans venture into space1-6. Yet, current frameworks for aerospace medicine are nascent and lag far behind advancements in precision medicine on Earth, underscoring the need for rapid development of space medicine databases, tools, and protocols. Here, we present the Space Omics and Medical Atlas (SOMA), an integrated data and sample repository for clinical, cellular, and multi-omic research profiles from a diverse range of missions, including the NASA Twins Study7, JAXA CFE study8,9, SpaceX Inspiration4 crew10-12, plus Axiom and Polaris. The SOMA resource represents a >10-fold increase in publicly available human space omics data, with matched samples available from the Cornell Aerospace Medicine Biobank. The Atlas includes extensive molecular and physiological profiles encompassing genomics, epigenomics, transcriptomics, proteomics, metabolomics, and microbiome data sets, which reveal some consistent features across missions, including cytokine shifts, telomere elongation, and gene expression changes, as well as mission-specific molecular responses and links to orthologous, tissue-specific murine data sets. Leveraging the datasets, tools, and resources in SOMA can help accelerate precision aerospace medicine, bringing needed health monitoring, risk mitigation, and countermeasures data for upcoming lunar, Mars, and exploration-class missions.

3.
Ecotoxicol Environ Saf ; 246: 114176, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36257123

RESUMEN

Mass transit systems, including subways and buses, are useful environments for studying the urban microbiome, as the vast majority of populations in urban areas use public transportation. Microbial communities in urban environments include both human- and environment-associated bacteria that play roles in health and pathogen transmission. In this study, we used shotgun metagenomic sequencing to profile microbial communities sampled from various surfaces found in subway stations and bus stops within the Seoul mass transit system. The metagenomic approach and network analysis were used to investigate broad-spectrum antibiotic resistance genes (ARGs) and their co-occurrence patterns. We uncovered 598 bacterial species in 76 samples collected from various surfaces within the Seoul mass transit system. All samples were dominated by the potential human pathogen Salmonella enterica (40 %) and the human skin bacterium Cutibacterium acnes (19 %). Significantly abundant biomarkers detected in subway station samples were associated with bacteria typically found in the human oral cavity and respiratory tract, whereas biomarkers detected in bus stop samples were associated with bacteria commonly found in soil, water, and plants. Temperature and location had significant effects on microbial community structure and diversity. In total, 41 unique ARG subtypes were identified, associated with single-drug or multidrug resistance to clinically important and extensively used antibiotics, including aminoglycosides, carbapenem, glycopeptide, and sulfonamides. We revealed that Seoul subway stations and bus stops possess unique microbiomes containing potential human pathogens and ARGs. These findings provide insights for refining location-specific responses to reduce exposure to potentially causative agents of infectious diseases, improving public health.


Asunto(s)
Antibacterianos , Metagenómica , Humanos , Antibacterianos/farmacología , Seúl , Farmacorresistencia Microbiana/genética , Bacterias/genética , Genes Bacterianos
4.
J Clin Transl Sci ; 8(1): e84, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38784106

RESUMEN

In underserved communities across New York City, uninsured adults encounter a greater risk of cardiovascular disease (CVD) and diabetes. The Heart-to-Heart Community Outreach Program (H2H) addresses these disparities by screening for CVD risk factors, identifying healthcare access barriers, and fostering community engagement in translational research at the Weill Cornell Medicine Clinical and Translational Science Award (CTSA) hub. Screening events are hosted in partnership with faith-based institutions. Participants provide a medical history, complete a survey, and receive counseling by clinicians with referrals for follow-up care. This study aims to quantify H2H screening participant health status; identify socioeconomic, health access, and health-related barriers disproportionately promoting the onset of CVD and diabetes; and develop long-term community partnerships to enable underserved communities to influence activities across the translational research spectrum at our CTSA hub. The population served is disproportionately non-white, and uninsured, with many low-income and underserved individuals. The program was developed in partnership with our Community Advisory Board to empower this cohort to make beneficial lifestyle changes. Leveraging partnerships with faith-based institutions and community centers in at-risk New York City neighborhoods, H2H addresses the increasing burden of diabetes and CVD risk factors in vulnerable individuals while promoting community involvement in CTSA activities, serving as a model for similar initiatives.

5.
Nat Commun ; 15(1): 4950, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862496

RESUMEN

The advent of civilian spaceflight challenges scientists to precisely describe the effects of spaceflight on human physiology, particularly at the molecular and cellular level. Newer, nanopore-based sequencing technologies can quantitatively map changes in chemical structure and expression at single molecule resolution across entire isoforms. We perform long-read, direct RNA nanopore sequencing, as well as Ultima high-coverage RNA-sequencing, of whole blood sampled longitudinally from four SpaceX Inspiration4 astronauts at seven timepoints, spanning pre-flight, day of return, and post-flight recovery. We report key genetic pathways, including changes in erythrocyte regulation, stress induction, and immune changes affected by spaceflight. We also present the first m6A methylation profiles for a human space mission, suggesting a significant spike in m6A levels immediately post-flight. These data and results represent the first longitudinal long-read RNA profiles and RNA modification maps for each gene for astronauts, improving our understanding of the human transcriptome's dynamic response to spaceflight.


Asunto(s)
Astronautas , Análisis de Secuencia de ARN , Vuelo Espacial , Humanos , Análisis de Secuencia de ARN/métodos , Transcriptoma/genética , Ingravidez , Masculino , Hematopoyesis/genética , Secuenciación de Nanoporos/métodos , Adulto , ARN/genética , ARN/sangre , Metilación , Persona de Mediana Edad
6.
Sci Rep ; 14(1): 7913, 2024 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575625

RESUMEN

Bacteriophages are recognized as the most abundant members of microbiomes and have therefore a profound impact on microbial communities through the interactions with their bacterial hosts. The International Metagenomics and Metadesign of Subways and Urban Biomes Consortium (MetaSUB) has sampled mass-transit systems in 60 cities over 3 years using metagenomics, throwing light into these hitherto largely unexplored urban environments. MetaSUB focused primarily on the bacterial community. In this work, we explored MetaSUB metagenomic data in order to recover and analyze bacteriophage genomes. We recovered and analyzed 1714 phage genomes with size at least 40 kbp, from the class Caudoviricetes, the vast majority of which (80%) are novel. The recovered genomes were predicted to belong to temperate (69%) and lytic (31%) phages. Thirty-three of these genomes have more than 200 kbp, and one of them reaches 572 kbp, placing it among the largest phage genomes ever found. In general, the phages tended to be site-specific or nearly so, but 194 genomes could be identified in every city from which phage genomes were retrieved. We predicted hosts for 48% of the phages and observed general agreement between phage abundance and the respective bacterial host abundance, which include the most common nosocomial multidrug-resistant pathogens. A small fraction of the phage genomes are carriers of antibiotic resistance genes, and such genomes tended to be particularly abundant in the sites where they were found. We also detected CRISPR-Cas systems in five phage genomes. This study expands the previously reported MetaSUB results and is a contribution to the knowledge about phage diversity, global distribution, and phage genome content.


Asunto(s)
Bacteriófagos , Microbiota , Vías Férreas , Bacteriófagos/genética , Microbiota/genética , Metagenoma/genética , Bacterias/genética
7.
Nat Commun ; 15(1): 4927, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862545

RESUMEN

It is now widely recognised that the environment in space activates a diverse set of genes involved in regulating fundamental cellular pathways. This includes the activation of genes associated with blood homoeostasis and erythropoiesis, with a particular emphasis on those involved in globin chain production. Haemoglobin biology provides an intriguing model for studying space omics, as it has been extensively explored at multiple -omic levels, spanning DNA, RNA, and protein analyses, in both experimental and clinical contexts. In this study, we examined the developmental expression of haemoglobin over time and space using a unique suite of multi-omic datasets available on NASA GeneLab, from the NASA Twins Study, the JAXA CFE study, and the Inspiration4 mission. Our findings reveal significant variations in globin gene expression corresponding to the distinct spatiotemporal characteristics of the collected samples. This study sheds light on the dynamic nature of globin gene regulation in response to the space environment and provides valuable insights into the broader implications of space omics research.


Asunto(s)
Hemoglobinas , Humanos , Hemoglobinas/metabolismo , Hemoglobinas/genética , Vuelo Espacial , Regulación de la Expresión Génica , Eritropoyesis/genética , Perfilación de la Expresión Génica/métodos
8.
Nat Commun ; 15(1): 4773, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862494

RESUMEN

Spaceflight can change metabolic, immunological, and biological homeostasis and cause skin rashes and irritation, yet the molecular basis remains unclear. To investigate the impact of short-duration spaceflight on the skin, we conducted skin biopsies on the Inspiration4 crew members before (L-44) and after (R + 1) flight. Leveraging multi-omics assays including GeoMx™ Digital Spatial Profiler, single-cell RNA/ATAC-seq, and metagenomics/metatranscriptomics, we assessed spatial gene expressions and associated microbial and immune changes across 95 skin regions in four compartments: outer epidermis, inner epidermis, outer dermis, and vasculature. Post-flight samples showed significant up-regulation of genes related to inflammation and KRAS signaling across all skin regions. These spaceflight-associated changes mapped to specific cellular responses, including altered interferon responses, DNA damage, epithelial barrier disruptions, T-cell migration, and hindered regeneration were located primarily in outer tissue compartments. We also linked epithelial disruption to microbial shifts in skin swab and immune cell activity to PBMC single-cell data from the same crew and timepoints. Our findings present the inaugural collection and examination of astronaut skin, offering insights for future space missions and response countermeasures.


Asunto(s)
Inflamación , Proteínas Proto-Oncogénicas p21(ras) , Piel , Vuelo Espacial , Humanos , Piel/inmunología , Piel/metabolismo , Piel/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Inflamación/inmunología , Inflamación/genética , Inflamación/metabolismo , Masculino , Análisis de la Célula Individual , Adulto , Persona de Mediana Edad , Femenino , Metagenómica/métodos , Perfilación de la Expresión Génica , Multiómica
9.
Sci Total Environ ; 918: 170452, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38296085

RESUMEN

Clinical testing has been a vital part of the response to and suppression of the COVID-19 pandemic; however, testing imposes significant burdens on a population. College students had to contend with clinical testing while simultaneously dealing with health risks and the academic pressures brought on by quarantines, changes to virtual platforms, and other disruptions to daily life. The objective of this study was to analyze whether wastewater surveillance can be used to decrease the intensity of clinical testing while maintaining reliable measurements of diseases incidence on campus. Twelve months of human health and wastewater surveillance data for eight residential buildings on a university campus were analyzed to establish how SARS-CoV-2 levels in the wastewater can be used to minimize clinical testing burden on students. Wastewater SARS-CoV-2 levels were used to create multiple scenarios, each with differing levels of testing intensity, which were compared to the actual testing volumes implemented by the university. We found that scenarios in which testing intensity fluctuations matched rise and falls in SARS-CoV-2 wastewater levels had stronger correlations between SARS-CoV-2 levels and recorded clinical positives. In addition to stronger correlations, most scenarios resulted in overall fewer weekly clinical tests performed. We suggest the use of wastewater surveillance to guide COVID-19 testing as it can significantly increase the efficacy of COVID-19 surveillance while reducing the burden placed on college students during a pandemic. Future efforts should be made to integrate wastewater surveillance into clinical testing strategies implemented on college campuses.


Asunto(s)
COVID-19 , Aguas Residuales , Humanos , Monitoreo Epidemiológico Basado en Aguas Residuales , Prueba de COVID-19 , Pandemias , Universidades , COVID-19/epidemiología , SARS-CoV-2
10.
Nat Commun ; 15(1): 4862, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862464

RESUMEN

As spaceflight becomes more common with commercial crews, blood-based measures of crew health can guide both astronaut biomedicine and countermeasures. By profiling plasma proteins, metabolites, and extracellular vesicles/particles (EVPs) from the SpaceX Inspiration4 crew, we generated "spaceflight secretome profiles," which showed significant differences in coagulation, oxidative stress, and brain-enriched proteins. While >93% of differentially abundant proteins (DAPs) in vesicles and metabolites recovered within six months, the majority (73%) of plasma DAPs were still perturbed post-flight. Moreover, these proteomic alterations correlated better with peripheral blood mononuclear cells than whole blood, suggesting that immune cells contribute more DAPs than erythrocytes. Finally, to discern possible mechanisms leading to brain-enriched protein detection and blood-brain barrier (BBB) disruption, we examined protein changes in dissected brains of spaceflight mice, which showed increases in PECAM-1, a marker of BBB integrity. These data highlight how even short-duration spaceflight can disrupt human and murine physiology and identify spaceflight biomarkers that can guide countermeasure development.


Asunto(s)
Coagulación Sanguínea , Barrera Hematoencefálica , Encéfalo , Homeostasis , Estrés Oxidativo , Vuelo Espacial , Animales , Humanos , Encéfalo/metabolismo , Barrera Hematoencefálica/metabolismo , Ratones , Coagulación Sanguínea/fisiología , Masculino , Secretoma/metabolismo , Ratones Endogámicos C57BL , Vesículas Extracelulares/metabolismo , Proteómica/métodos , Biomarcadores/metabolismo , Biomarcadores/sangre , Femenino , Adulto , Proteínas Sanguíneas/metabolismo , Persona de Mediana Edad , Leucocitos Mononucleares/metabolismo , Proteoma/metabolismo
11.
Nat Commun ; 15(1): 4825, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862542

RESUMEN

Our previous research revealed a key microRNA signature that is associated with spaceflight that can be used as a biomarker and to develop countermeasure treatments to mitigate the damage caused by space radiation. Here, we expand on this work to determine the biological factors rescued by the countermeasure treatment. We performed RNA-sequencing and transcriptomic analysis on 3D microvessel cell cultures exposed to simulated deep space radiation (0.5 Gy of Galactic Cosmic Radiation) with and without the antagonists to three microRNAs: miR-16-5p, miR-125b-5p, and let-7a-5p (i.e., antagomirs). Significant reduction of inflammation and DNA double strand breaks (DSBs) activity and rescue of mitochondria functions are observed after antagomir treatment. Using data from astronaut participants in the NASA Twin Study, Inspiration4, and JAXA missions, we reveal the genes and pathways implicated in the action of these antagomirs are altered in humans. Our findings indicate a countermeasure strategy that can potentially be utilized by astronauts in spaceflight missions to mitigate space radiation damage.


Asunto(s)
Astronautas , Radiación Cósmica , MicroARNs , Vuelo Espacial , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Radiación Cósmica/efectos adversos , Roturas del ADN de Doble Cadena/efectos de la radiación , Traumatismos por Radiación/genética , Traumatismos por Radiación/prevención & control , Masculino , Mitocondrias/efectos de la radiación , Mitocondrias/metabolismo , Mitocondrias/genética , Femenino , Adulto
12.
Precis Clin Med ; 7(1): pbae007, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38634106

RESUMEN

Background: The Inspiration4 (I4) mission, the first all-civilian orbital flight mission, investigated the physiological effects of short-duration spaceflight through a multi-omic approach. Despite advances, there remains much to learn about human adaptation to spaceflight's unique challenges, including microgravity, immune system perturbations, and radiation exposure. Methods: To provide a detailed genetics analysis of the mission, we collected dried blood spots pre-, during, and post-flight for DNA extraction. Telomere length was measured by quantitative PCR, while whole genome and cfDNA sequencing provided insight into genomic stability and immune adaptations. A robust bioinformatic pipeline was used for data analysis, including variant calling to assess mutational burden. Result: Telomere elongation occurred during spaceflight and shortened after return to Earth. Cell-free DNA analysis revealed increased immune cell signatures post-flight. No significant clonal hematopoiesis of indeterminate potential (CHIP) or whole-genome instability was observed. The long-term gene expression changes across immune cells suggested cellular adaptations to the space environment persisting months post-flight. Conclusion: Our findings provide valuable insights into the physiological consequences of short-duration spaceflight, with telomere dynamics and immune cell gene expression adapting to spaceflight and persisting after return to Earth. CHIP sequencing data will serve as a reference point for studying the early development of CHIP in astronauts, an understudied phenomenon as previous studies have focused on career astronauts. This study will serve as a reference point for future commercial and non-commercial spaceflight, low Earth orbit (LEO) missions, and deep-space exploration.

13.
Nat Commun ; 15(1): 4964, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862509

RESUMEN

The SpaceX Inspiration4 mission provided a unique opportunity to study the impact of spaceflight on the human body. Biospecimen samples were collected from four crew members longitudinally before (Launch: L-92, L-44, L-3 days), during (Flight Day: FD1, FD2, FD3), and after (Return: R + 1, R + 45, R + 82, R + 194 days) spaceflight, spanning a total of 289 days across 2021-2022. The collection process included venous whole blood, capillary dried blood spot cards, saliva, urine, stool, body swabs, capsule swabs, SpaceX Dragon capsule HEPA filter, and skin biopsies. Venous whole blood was further processed to obtain aliquots of serum, plasma, extracellular vesicles and particles, and peripheral blood mononuclear cells. In total, 2,911 sample aliquots were shipped to our central lab at Weill Cornell Medicine for downstream assays and biobanking. This paper provides an overview of the extensive biospecimen collection and highlights their processing procedures and long-term biobanking techniques, facilitating future molecular tests and evaluations.As such, this study details a robust framework for obtaining and preserving high-quality human, microbial, and environmental samples for aerospace medicine in the Space Omics and Medical Atlas (SOMA) initiative, which can aid future human spaceflight and space biology experiments.


Asunto(s)
Bancos de Muestras Biológicas , Vuelo Espacial , Manejo de Especímenes , Humanos , Manejo de Especímenes/métodos , Astronautas
14.
Nat Microbiol ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862604

RESUMEN

Maintenance of astronaut health during spaceflight will require monitoring and potentially modulating their microbiomes. However, documenting microbial shifts during spaceflight has been difficult due to mission constraints that lead to limited sampling and profiling. Here we executed a six-month longitudinal study to quantify the high-resolution human microbiome response to three days in orbit for four individuals. Using paired metagenomics and metatranscriptomics alongside single-nuclei immune cell profiling, we characterized time-dependent, multikingdom microbiome changes across 750 samples and 10 body sites before, during and after spaceflight at eight timepoints. We found that most alterations were transient across body sites; for example, viruses increased in skin sites mostly during flight. However, longer-term shifts were observed in the oral microbiome, including increased plaque-associated bacteria (for example, Fusobacteriota), which correlated with immune cell gene expression. Further, microbial genes associated with phage activity, toxin-antitoxin systems and stress response were enriched across multiple body sites. In total, this study reveals in-depth characterization of microbiome and immune response shifts experienced by astronauts during short-term spaceflight and the associated changes to the living environment, which can help guide future missions, spacecraft design and space habitat planning.

15.
Nat Commun ; 15(1): 4954, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862516

RESUMEN

Spaceflight induces an immune response in astronauts. To better characterize this effect, we generated single-cell, multi-ome, cell-free RNA (cfRNA), biochemical, and hematology data for the SpaceX Inspiration4 (I4) mission crew. We found that 18 cytokines/chemokines related to inflammation, aging, and muscle homeostasis changed after spaceflight. In I4 single-cell multi-omics data, we identified a "spaceflight signature" of gene expression characterized by enrichment in oxidative phosphorylation, UV response, immune function, and TCF21 pathways. We confirmed the presence of this signature in independent datasets, including the NASA Twins Study, the I4 skin spatial transcriptomics, and 817 NASA GeneLab mouse transcriptomes. Finally, we observed that (1) T cells showed an up-regulation of FOXP3, (2) MHC class I genes exhibited long-term suppression, and (3) infection-related immune pathways were associated with microbiome shifts. In summary, this study reveals conserved and distinct immune disruptions occurring and details a roadmap for potential countermeasures to preserve astronaut health.


Asunto(s)
Análisis de la Célula Individual , Vuelo Espacial , Transcriptoma , Animales , Femenino , Masculino , Humanos , Ratones , Astronautas , Citocinas/metabolismo , Linfocitos T/inmunología , Factores Sexuales , Perfilación de la Expresión Génica , Fosforilación Oxidativa
16.
Microbiol Resour Announc ; 12(1): e0109222, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36515525

RESUMEN

Here, we performed shotgun metagenome sequencing of swab samples collected on floors at a train station in Narita City, Chiba, Japan. The taxonomic analysis revealed that Actinobacteria and Proteobacteria were the dominant phyla. The data will contribute to insight into the microbiome community on the surfaces of urban built environments.

17.
Front Microbiol ; 14: 1253371, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37808297

RESUMEN

Introduction: The ancient city of Tel Megiddo in the Jezreel Valley (Israel), which lasted from the Neolithic to the Iron Age, has been continuously excavated since 1903 and is now recognized as a World Heritage Site. The site features multiple ruins in various areas, including temples and stables, alongside modern constructions, and public access is allowed in designated areas. The site has been studied extensively since the last century; however, its microbiome has never been studied. We carried out the first survey of the microbiomes in Tel Megiddo. Our objectives were to study (i) the unique microbial community structure of the site, (ii) the variation in the microbial communities across areas, (iii) the similarity of the microbiomes to urban and archeological microbes, (iv) the presence and abundance of potential bio-corroding microbes, and (v) the presence and abundance of potentially pathogenic microbes. Methods: We collected 40 swab samples from ten major areas and identified microbial taxa using next-generation sequencing of microbial genomes. These genomes were annotated and classified taxonomically and pathogenetically. Results: We found that eight phyla, six of which exist in all ten areas, dominated the site (>99%). The relative sequence abundance of taxa varied between the ruins and the sampled materials and was assessed using all metagenomic reads mapping to a respective taxon. The site hosted unique taxa characteristic of the built environment and exhibited high similarity to the microbiome of other monuments. We identified acid-producing bacteria that may pose a risk to the site through biocorrosion and staining and thus pose a danger to the site's preservation. Differences in the microbiomes of the publicly accessible or inaccessible areas were insignificant; however, pathogens were more abundant in the former. Discussion: We found that Tel Megiddo combines microbiomes of arid regions and monuments with human pathogens. The findings shed light on the microbial community structures and have relevance for bio-conservation efforts and visitor health.

18.
medRxiv ; 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37808806

RESUMEN

In underserved communities in New York City, uninsured adults encounter a greater risk of cardiovascular disease and diabetes. The Heart-to-Heart Community Outreach Program (H2H) is addressing these disparities by providing screenings for diabetes and other cardiovascular disease risk factors, fostering community engagement in translational research at our CTSC. Screening events are hosted in partnership with community faith-based institutions. Participants provide medical history, complete a survey, and receive individualized counseling by clinicians with referrals for follow-up care. The population served is disproportionately non-white, uninsured, with low-income, and underserved. The program empowers participants to make beneficial lifestyle changes using myriad strategies to reach those most in need. This required strong foundational program leadership, effective inter-institutional collaboration, and maintaining of community trust. Leveraging partnerships with faith-based institutions and community centers in at-risk NYC neighborhoods, H2H addresses the increasing burden of diabetes and cardiovascular disease risk factors in vulnerable individuals and provides a model for similar initiatives.

19.
medRxiv ; 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37398062

RESUMEN

Wastewater, which contains everything from pathogens to pollutants, is a geospatially-and temporally-linked microbial fingerprint of a given population. As a result, it can be leveraged for monitoring multiple dimensions of public health across locales and time. Here, we integrate targeted and bulk RNA sequencing (n=1,419 samples) to track the viral, bacterial, and functional content over geospatially distinct areas within Miami Dade County from 2020-2022. First, we used targeted amplicon sequencing (n=966) to track diverse SARS-CoV-2 variants across space and time, and we found a tight correspondence with clinical caseloads from University students (N = 1,503) and Miami-Dade County hospital patients (N = 3,939 patients), as well as an 8-day earlier detection of the Delta variant in wastewater vs. in patients. Additionally, in 453 metatranscriptomic samples, we demonstrate that different wastewater sampling locations have clinically and public-health-relevant microbiota that vary as a function of the size of the human population they represent. Through assembly, alignment-based, and phylogenetic approaches, we also detect multiple clinically important viruses (e.g., norovirus ) and describe geospatial and temporal variation in microbial functional genes that indicate the presence of pollutants. Moreover, we found distinct profiles of antimicrobial resistance (AMR) genes and virulence factors across campus buildings, dorms, and hospitals, with hospital wastewater containing a significant increase in AMR abundance. Overall, this effort lays the groundwork for systematic characterization of wastewater to improve public health decision making and a broad platform to detect emerging pathogens.

20.
bioRxiv ; 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37205403

RESUMEN

The SpaceX Inspiration4 mission provided a unique opportunity to study the impact of spaceflight on the human body. Biospecimen samples were collected from the crew at different stages of the mission, including before (L-92, L-44, L-3 days), during (FD1, FD2, FD3), and after (R+1, R+45, R+82, R+194 days) spaceflight, creating a longitudinal sample set. The collection process included samples such as venous blood, capillary dried blood spot cards, saliva, urine, stool, body swabs, capsule swabs, SpaceX Dragon capsule HEPA filter, and skin biopsies, which were processed to obtain aliquots of serum, plasma, extracellular vesicles, and peripheral blood mononuclear cells. All samples were then processed in clinical and research laboratories for optimal isolation and testing of DNA, RNA, proteins, metabolites, and other biomolecules. This paper describes the complete set of collected biospecimens, their processing steps, and long-term biobanking methods, which enable future molecular assays and testing. As such, this study details a robust framework for obtaining and preserving high-quality human, microbial, and environmental samples for aerospace medicine in the Space Omics and Medical Atlas (SOMA) initiative, which can also aid future experiments in human spaceflight and space biology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA