Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Br J Haematol ; 203(4): 523-535, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37858962

RESUMEN

The diagnosis of myeloproliferative neoplasms (MPN) requires the integration of clinical, morphological, genetic and immunophenotypic findings. Recently, there has been a transformation in our understanding of the cellular and molecular mechanisms underlying disease initiation and progression in MPN. This has been accompanied by the widespread application of high-resolution quantitative molecular techniques. By contrast, microscopic interpretation of bone marrow biopsies by haematologists/haematopathologists remains subjective and qualitative. However, advances in tissue image analysis and artificial intelligence (AI) promise to transform haematopathology. Pioneering studies in bone marrow image analysis offer to refine our understanding of the boundaries between reactive samples and MPN subtypes and better capture the morphological correlates of high-risk disease. They also demonstrate potential to improve the evaluation of current and novel therapeutics for MPN and other blood cancers. With increased therapeutic targeting of diverse molecular, cellular and extra-cellular components of the marrow, these approaches can address the unmet need for improved objective and quantitative measures of disease modification in the context of clinical trials. This review focuses on the state-of-the-art in image analysis/AI of bone marrow tissue, with an emphasis on its potential to complement and inform future clinical studies and research in MPN.


Asunto(s)
Neoplasias Hematológicas , Trastornos Mieloproliferativos , Humanos , Médula Ósea/patología , Inteligencia Artificial , Trastornos Mieloproliferativos/genética , Neoplasias Hematológicas/patología , Biopsia
2.
Leukemia ; 37(2): 348-358, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36470992

RESUMEN

The grading of fibrosis in myeloproliferative neoplasms (MPN) is an important component of disease classification, prognostication and monitoring. However, current fibrosis grading systems are only semi-quantitative and fail to fully capture sample heterogeneity. To improve the quantitation of reticulin fibrosis, we developed a machine learning approach using bone marrow trephine (BMT) samples (n = 107) from patients diagnosed with MPN or a reactive marrow. The resulting Continuous Indexing of Fibrosis (CIF) enhances the detection and monitoring of fibrosis within BMTs, and aids MPN subtyping. When combined with megakaryocyte feature analysis, CIF discriminates between the frequently challenging differential diagnosis of essential thrombocythemia (ET) and pre-fibrotic myelofibrosis with high predictive accuracy [area under the curve = 0.94]. CIF also shows promise in the identification of MPN patients at risk of disease progression; analysis of samples from 35 patients diagnosed with ET and enrolled in the Primary Thrombocythemia-1 trial identified features predictive of post-ET myelofibrosis (area under the curve = 0.77). In addition to these clinical applications, automated analysis of fibrosis has clear potential to further refine disease classification boundaries and inform future studies of the micro-environmental factors driving disease initiation and progression in MPN and other stem cell disorders.


Asunto(s)
Trastornos Mieloproliferativos , Policitemia Vera , Mielofibrosis Primaria , Trombocitemia Esencial , Humanos , Mielofibrosis Primaria/diagnóstico , Mielofibrosis Primaria/patología , Policitemia Vera/patología , Trastornos Mieloproliferativos/diagnóstico , Trastornos Mieloproliferativos/patología , Médula Ósea/patología , Trombocitemia Esencial/diagnóstico , Trombocitemia Esencial/patología , Fibrosis
3.
Phys Med Biol ; 64(18): 185010, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31408850

RESUMEN

The first trimester fetal ultrasound scan is important to confirm fetal viability, to estimate the gestational age of the fetus, and to detect fetal anomalies early in pregnancy. First trimester ultrasound images have a different appearance than for the second trimester scan, reflecting the different stage of fetal development. There is limited literature on automation of image-based assessment for this earlier trimester, and most of the literature is focused on one specific fetal anatomy. In this paper, we consider automation to support first trimester fetal assessment of multiple fetal anatomies including both visualization and the measurements from a single 3D ultrasound scan. We present a deep learning and image processing solution (i) to perform semantic segmentation of the whole fetus, (ii) to estimate plane orientation for standard biometry views, (iii) to localize and automatically estimate biometry, and (iv) to detect fetal limbs from a 3D first trimester volume. Computational analysis methods were built using a real-world dataset (n = 44 volumes). An evaluation on a further independent clinical dataset (n = 21 volumes) showed that the automated methods approached human expert assessment of a 3D volume.


Asunto(s)
Desarrollo Fetal , Feto/diagnóstico por imagen , Edad Gestacional , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Ultrasonografía Prenatal/métodos , Abdomen/diagnóstico por imagen , Algoritmos , Femenino , Cabeza/diagnóstico por imagen , Humanos , Embarazo , Primer Trimestre del Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA