Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 632(8027): 1145-1154, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38862028

RESUMEN

Spaceflight induces molecular, cellular and physiological shifts in astronauts and poses myriad biomedical challenges to the human body, which are becoming increasingly relevant as more humans venture into space1-6. Yet current frameworks for aerospace medicine are nascent and lag far behind advancements in precision medicine on Earth, underscoring the need for rapid development of space medicine databases, tools and protocols. Here we present the Space Omics and Medical Atlas (SOMA), an integrated data and sample repository for clinical, cellular and multi-omic research profiles from a diverse range of missions, including the NASA Twins Study7, JAXA CFE study8,9, SpaceX Inspiration4 crew10-12, Axiom and Polaris. The SOMA resource represents a more than tenfold increase in publicly available human space omics data, with matched samples available from the Cornell Aerospace Medicine Biobank. The Atlas includes extensive molecular and physiological profiles encompassing genomics, epigenomics, transcriptomics, proteomics, metabolomics and microbiome datasets, which reveal some consistent features across missions, including cytokine shifts, telomere elongation and gene expression changes, as well as mission-specific molecular responses and links to orthologous, tissue-specific mouse datasets. Leveraging the datasets, tools and resources in SOMA can help to accelerate precision aerospace medicine, bringing needed health monitoring, risk mitigation and countermeasure data for upcoming lunar, Mars and exploration-class missions.


Asunto(s)
Medicina Aeroespacial , Astronautas , Bancos de Muestras Biológicas , Bases de Datos Factuales , Internacionalidad , Vuelo Espacial , Animales , Femenino , Humanos , Masculino , Ratones , Medicina Aeroespacial/métodos , Atlas como Asunto , Citocinas/metabolismo , Conjuntos de Datos como Asunto , Epigenómica , Perfilación de la Expresión Génica , Genómica , Metabolómica , Microbiota/genética , Multiómica , Especificidad de Órganos , Medicina de Precisión/tendencias , Proteómica , Vuelo Espacial/estadística & datos numéricos , Telómero/metabolismo , Gemelos
2.
Artículo en Inglés | MEDLINE | ID: mdl-39038948

RESUMEN

BACKGROUND: In multiple sclerosis (MS), both lesion accrual and brain atrophy predict clinical outcomes. However, it is unclear whether these prognostic features are equally relevant throughout the course of MS. Among 103 participants recruited following a clinically isolated syndrome (CIS) and followed up over 30 years, we explored (1) whether white matter lesions were prognostically more relevant earlier and brain atrophy later in the disease course towards development of secondary progressive (SP) disease; (2) if so, when the balance in prognostic contribution shifts and (3) whether optimised prognostic models predicting SP disease should include different features dependent on disease duration. METHODS: Binary logistic regression models were built using age, gender, brain lesion counts and locations, and linear atrophy measures (third ventricular width and medullary width) at each time point up to 20 years, using either single time point data alone or adjusted for baseline measures. RESULTS: By 30 years, 27 participants remained CIS while 60 had MS (26 SPMS and 16 MS-related death). Lesions counts were prognostically significant from baseline and at all later time points while linear atrophy measure models reached significance from 5 years. When adjusted for baseline, in combined MRI models including lesion count and linear atrophy measures, only lesion counts were significant predictors. In combined models including relapse measures, Expanded Disability Status Scale scores and MRI measures, only infratentorial lesions were significant predictors throughout. CONCLUSIONS: While SPMS progression is associated with brain atrophy, in predictive models only infratentorial lesions were consistently prognostically significant.

3.
FASEB J ; 37(12): e23246, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37990646

RESUMEN

There has been growing interest within the space industry for long-duration manned expeditions to the Moon and Mars. During deep space missions, astronauts are exposed to high levels of galactic cosmic radiation (GCR) and microgravity which are associated with increased risk of oxidative stress and endothelial dysfunction. Oxidative stress and endothelial dysfunction are causative factors in the pathogenesis of erectile dysfunction, although the effects of spaceflight on erectile function have been unexplored. Therefore, the purpose of this study was to investigate the effects of simulated spaceflight and long-term recovery on tissues critical for erectile function, the distal internal pudendal artery (dIPA), and the corpus cavernosum (CC). Eighty-six adult male Fisher-344 rats were randomized into six groups and exposed to 4-weeks of hindlimb unloading (HLU) or weight-bearing control, and sham (0Gy), 0.75 Gy, or 1.5 Gy of simulated GCR at the ground-based GCR simulator at the NASA Space Radiation Laboratory. Following a 12-13-month recovery, ex vivo physiological analysis of the dIPA and CC tissue segments revealed differential impacts of HLU and GCR on endothelium-dependent and -independent relaxation that was tissue type specific. GCR impaired non-adrenergic non-cholinergic (NANC) nerve-mediated relaxation in the dIPA and CC, while follow-up experiments of the CC showed restoration of NANC-mediated relaxation of GCR tissues following acute incubation with the antioxidants mito-TEMPO and TEMPOL, as well as inhibitors of xanthine oxidase and arginase. These findings indicate that simulated spaceflight exerts a long-term impairment of neurovascular erectile function, which exposes a new health risk to consider with deep space exploration.


Asunto(s)
Disfunción Eréctil , Vuelo Espacial , Ingravidez , Humanos , Ratas , Masculino , Animales , Ingravidez/efectos adversos , Disfunción Eréctil/etiología , Suspensión Trasera
4.
Langmuir ; 39(19): 6855-6864, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37133504

RESUMEN

Sustainable liquid cooling solutions are recognized as the future of thermal management in the chip industry. Among them, phase change heat transfer devices such as heat pipes and vapor chambers have shown tremendous potential. These devices rely on the physics of capillary-driven thin-film evaporation, which is inherently coupled with the design and optimization of the evaporator wicks used in these devices. Here, we introduce a biomimetic evaporator wick design inspired by the peristome of the Nepenthes alata that can achieve significantly enhanced evaporative cooling. It consists of an array of micropillars with multiple wedges along the sidewall of each micropillar. The efficacy of the wedged micropillar is evaluated based on a validated numerical model on the metrics of dryout heat flux and effective heat transfer coefficient. The wedge angle is chosen such that wedged micropillars cause liquid filaments to rise along the micropillar vertical walls. This results in a significant increase in thin-film area for evaporation. Additionally, the large mean curvature of the liquid meniscus produces strong capillary pumping pressure and simultaneously, the wedges increase the overall permeability of the wick. Consequently, our model predicts that the wedged micropillar wick can attain ∼234% enhancement of dryout heat flux compared to a conventional cylindrical micropillar wick of similar geometrical dimensions. Moreover, the wedged micropillars can also attain a higher effective heat transfer coefficient under dryout conditions, thus outperforming the cylindrical micropillar in terms of heat transfer efficiency. Our study provides insight into the design and capability of the biomimetic wedged micropillars as an efficient evaporator wick for various thin-film evaporation applications.

5.
Brain ; 143(7): 1999-2008, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32163545

RESUMEN

Mitochondrial failure and hypoxia are key contributors to multiple sclerosis pathophysiology. Importantly, improving mitochondrial function holds promise as a new therapeutic strategy in multiple sclerosis. Currently, studying mitochondrial changes in multiple sclerosis is hampered by a paucity of non-invasive techniques to investigate mitochondrial function of the CNS in vivo. It is against this backdrop that the anterior visual system provides new avenues for monitoring of mitochondrial changes. The retina and optic nerve are among the metabolically most active structures in the human body and are almost always affected to some degree in multiple sclerosis. Here, we provide an update on emerging technologies that have the potential to indirectly monitor changes of metabolism and mitochondrial function. We report on the promising work with optical coherence tomography, showing structural changes in outer retinal mitochondrial signal bands, and with optical coherence angiography, quantifying retinal perfusion at the microcapillary level. We show that adaptive optics scanning laser ophthalmoscopy can visualize live perfusion through microcapillaries and structural changes at the level of single photoreceptors and neurons. Advantages and limitations of these techniques are summarized with regard to future research into the pathology of the disease and as trial outcome measures.


Asunto(s)
Mitocondrias/metabolismo , Esclerosis Múltiple/diagnóstico por imagen , Neuroimagen/métodos , Nervio Óptico/diagnóstico por imagen , Retina/diagnóstico por imagen , Animales , Humanos , Mitocondrias/patología , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/fisiopatología , Nervio Óptico/patología , Retina/patología
6.
Brain ; 143(10): 3104-3120, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32637987

RESUMEN

Preliminary clinical data indicate that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with neurological and neuropsychiatric illness. Responding to this, a weekly virtual coronavirus disease 19 (COVID-19) neurology multi-disciplinary meeting was established at the National Hospital, Queen Square, in early March 2020 in order to discuss and begin to understand neurological presentations in patients with suspected COVID-19-related neurological disorders. Detailed clinical and paraclinical data were collected from cases where the diagnosis of COVID-19 was confirmed through RNA PCR, or where the diagnosis was probable/possible according to World Health Organization criteria. Of 43 patients, 29 were SARS-CoV-2 PCR positive and definite, eight probable and six possible. Five major categories emerged: (i) encephalopathies (n = 10) with delirium/psychosis and no distinct MRI or CSF abnormalities, and with 9/10 making a full or partial recovery with supportive care only; (ii) inflammatory CNS syndromes (n = 12) including encephalitis (n = 2, para- or post-infectious), acute disseminated encephalomyelitis (n = 9), with haemorrhage in five, necrosis in one, and myelitis in two, and isolated myelitis (n = 1). Of these, 10 were treated with corticosteroids, and three of these patients also received intravenous immunoglobulin; one made a full recovery, 10 of 12 made a partial recovery, and one patient died; (iii) ischaemic strokes (n = 8) associated with a pro-thrombotic state (four with pulmonary thromboembolism), one of whom died; (iv) peripheral neurological disorders (n = 8), seven with Guillain-Barré syndrome, one with brachial plexopathy, six of eight making a partial and ongoing recovery; and (v) five patients with miscellaneous central disorders who did not fit these categories. SARS-CoV-2 infection is associated with a wide spectrum of neurological syndromes affecting the whole neuraxis, including the cerebral vasculature and, in some cases, responding to immunotherapies. The high incidence of acute disseminated encephalomyelitis, particularly with haemorrhagic change, is striking. This complication was not related to the severity of the respiratory COVID-19 disease. Early recognition, investigation and management of COVID-19-related neurological disease is challenging. Further clinical, neuroradiological, biomarker and neuropathological studies are essential to determine the underlying pathobiological mechanisms that will guide treatment. Longitudinal follow-up studies will be necessary to ascertain the long-term neurological and neuropsychological consequences of this pandemic.


Asunto(s)
Infecciones por Coronavirus , Enfermedades del Sistema Nervioso , Pandemias , Neumonía Viral , Adolescente , Corticoesteroides/uso terapéutico , Adulto , Anciano , Anciano de 80 o más Años , Betacoronavirus/patogenicidad , COVID-19 , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/epidemiología , Utilización de Medicamentos/estadística & datos numéricos , Femenino , Humanos , Inmunoglobulinas Intravenosas/uso terapéutico , Londres/epidemiología , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Enfermedades del Sistema Nervioso/líquido cefalorraquídeo , Enfermedades del Sistema Nervioso/diagnóstico por imagen , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Enfermedades del Sistema Nervioso/epidemiología , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/epidemiología , Estudios Retrospectivos , SARS-CoV-2 , Adulto Joven
7.
J Neurol Neurosurg Psychiatry ; 91(6): 605-611, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32217788

RESUMEN

OBJECTIVE: To explore levels of astrocytopathy in neuromyelitis optica spectrum disorder (NMOSD) by measuring levels of the astrocytic enzyme glutamine synthetase (GS) and glial fibrillary acidic protein (GFAP), an established astrocytic biomarker known to be associated with disease activity in multiple sclerosis. METHODS: Cerebrospinal fluid concentrations of GS and GFAP were measured by ELISA in patients with NMOSD (n=39, 28 aquaporin-4 (AQP4)-Ab-seropositive, 3 double-Ab-seronegative, 4 myelin oligodendrocyte glycoprotein (MOG)-Ab-seropositive and 4 AQP4-Ab-seronegative with unknown MOG-Ab-serostatus), multiple sclerosis (MS) (n=69), optic neuritis (n=5) and non-neurological controls (n=37). RESULTS: GFAP and GS concentrations differed significantly across groups (both p<0.001), showing a similar pattern of elevation in patients with AQP4-Ab-seropositive NMOSD. GS and GFAP were significantly correlated, particularly in patients with AQP4-Ab-seropositive NMOSD (rs=0.70, p<0.001). Interestingly, GFAP levels in some patients with double-Ab-seronegative NMOSD were markedly increased. CONCLUSIONS: Our data indicate astrocytic injury occurs in some patients with double-Ab-seronegative NMOSD, which hints at the possible existence of yet undiscovered astrocytic autoimmune targets. We hypothesise that elevated GS and GFAP levels could identify those double-Ab-seronegative patients suitable to undergo in-depth autoimmune screening for astrocytic antibodies.


Asunto(s)
Astrocitos , Proteína Ácida Fibrilar de la Glía/líquido cefalorraquídeo , Glutamato-Amoníaco Ligasa/líquido cefalorraquídeo , Neuromielitis Óptica/líquido cefalorraquídeo , Adolescente , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Adulto Joven
8.
Mult Scler ; 26(14): 1958-1960, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32228206

RESUMEN

The cardinal features of neuromyelitis optica spectrum disorder (NMOSD) are optic neuritis, longitudinal extensive transverse myelitis and area postrema syndrome. Olfactory dysfunction is not listed as a feature in the NMOSD diagnostic criteria. Here, we present an aquaporin-4 antibody positive patient who, in addition to classical features of NMOSD, developed acute anosmia with magnetic resonance imaging (MRI) evidence of olfactory bulb abnormalities. While the association of anosmia and NMOSD has been rarely noted previously, to our knowledge, no prior cases have found this to be one of the presenting features of a relapse nor have they identified acute radiological correlates.


Asunto(s)
Mielitis Transversa , Neuromielitis Óptica , Anosmia , Acuaporina 4 , Humanos , Recurrencia Local de Neoplasia , Neuromielitis Óptica/complicaciones , Neuromielitis Óptica/diagnóstico por imagen
9.
FASEB J ; 32(9): 4848-4861, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29596023

RESUMEN

Inflammatory bowel disease (IBD) is a chronic disease with gastrointestinal dysfunction as well as comorbidities such as inflammation-induced bone loss and impaired immune response. Current treatments for IBD all have negative, potentially severe side effects. We aimed to test whether exogenous treatment with irisin, a novel immunomodulatory adipomyokine, could ameliorate IBD-induced lymphatic and bone alterations. Irisin treatment improved both gut and bone outcomes by mitigating inflammation and restoring structure. In the gut, IBD caused colonic lymphatic hyperproliferation into the mucosal and submucosal compartments. This proliferation in the rodent model is akin to what is observed in IBD patient case studies. In bone, IBD increased osteoclast surface and decreased bone formation. Both gut and osteocytes in bone exhibited elevated levels of TNF-α and receptor activator of NF-κB ligand (RANKL) protein expression. Exogenous irisin treatment restored normal colonic lymphatic architecture and increased bone formation rate concurrent with decreased osteoclast surfaces. After irisin treatment, gut and osteocyte TNF-α and RANKL protein expression levels were no different from vehicle controls. Our data indicate that the systemic immunologic changes that occur in IBD are initiated by damage in the gut and likely linked through the lymphatic system. Additionally, irisin is a potential novel intervention mitigating both local inflammatory changes in the gut and distant changes in bone.-Narayanan, S. A., Metzger, C. E., Bloomfield, S. A., Zawieja, D. C. Inflammation-induced lymphatic architecture and bone turnover changes are ameliorated by irisin treatment in chronic inflammatory bowel disease.


Asunto(s)
Remodelación Ósea/efectos de los fármacos , Fibronectinas/farmacología , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Vasos Linfáticos/efectos de los fármacos , Animales , Remodelación Ósea/fisiología , Enfermedad Crónica , Colon/efectos de los fármacos , Colon/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Vasos Linfáticos/metabolismo , Masculino , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Osteocitos/efectos de los fármacos , Osteocitos/metabolismo , Ratas Sprague-Dawley
15.
Eur J Hum Genet ; 32(1): 10-20, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37938797

RESUMEN

COVID-19, the disease caused by SARS-CoV-2, has caused significant morbidity and mortality worldwide. The betacoronavirus continues to evolve with global health implications as we race to learn more to curb its transmission, evolution, and sequelae. The focus of this review, the second of a three-part series, is on the biological effects of the SARS-CoV-2 virus on post-acute disease in the context of tissue and organ adaptations and damage. We highlight the current knowledge and describe how virological, animal, and clinical studies have shed light on the mechanisms driving the varied clinical diagnoses and observations of COVID-19 patients. Moreover, we describe how investigations into SARS-CoV-2 effects have informed the understanding of viral pathogenesis and provide innovative pathways for future research on the mechanisms of viral diseases.


Asunto(s)
COVID-19 , Animales , Humanos , SARS-CoV-2
16.
Nat Commun ; 15(1): 4773, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862494

RESUMEN

Spaceflight can change metabolic, immunological, and biological homeostasis and cause skin rashes and irritation, yet the molecular basis remains unclear. To investigate the impact of short-duration spaceflight on the skin, we conducted skin biopsies on the Inspiration4 crew members before (L-44) and after (R + 1) flight. Leveraging multi-omics assays including GeoMx™ Digital Spatial Profiler, single-cell RNA/ATAC-seq, and metagenomics/metatranscriptomics, we assessed spatial gene expressions and associated microbial and immune changes across 95 skin regions in four compartments: outer epidermis, inner epidermis, outer dermis, and vasculature. Post-flight samples showed significant up-regulation of genes related to inflammation and KRAS signaling across all skin regions. These spaceflight-associated changes mapped to specific cellular responses, including altered interferon responses, DNA damage, epithelial barrier disruptions, T-cell migration, and hindered regeneration were located primarily in outer tissue compartments. We also linked epithelial disruption to microbial shifts in skin swab and immune cell activity to PBMC single-cell data from the same crew and timepoints. Our findings present the inaugural collection and examination of astronaut skin, offering insights for future space missions and response countermeasures.


Asunto(s)
Inflamación , Proteínas Proto-Oncogénicas p21(ras) , Piel , Vuelo Espacial , Humanos , Piel/inmunología , Piel/metabolismo , Piel/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Inflamación/inmunología , Inflamación/genética , Inflamación/metabolismo , Masculino , Análisis de la Célula Individual , Adulto , Persona de Mediana Edad , Femenino , Metagenómica/métodos , Perfilación de la Expresión Génica , Multiómica
17.
Nat Commun ; 15(1): 4862, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862464

RESUMEN

As spaceflight becomes more common with commercial crews, blood-based measures of crew health can guide both astronaut biomedicine and countermeasures. By profiling plasma proteins, metabolites, and extracellular vesicles/particles (EVPs) from the SpaceX Inspiration4 crew, we generated "spaceflight secretome profiles," which showed significant differences in coagulation, oxidative stress, and brain-enriched proteins. While >93% of differentially abundant proteins (DAPs) in vesicles and metabolites recovered within six months, the majority (73%) of plasma DAPs were still perturbed post-flight. Moreover, these proteomic alterations correlated better with peripheral blood mononuclear cells than whole blood, suggesting that immune cells contribute more DAPs than erythrocytes. Finally, to discern possible mechanisms leading to brain-enriched protein detection and blood-brain barrier (BBB) disruption, we examined protein changes in dissected brains of spaceflight mice, which showed increases in PECAM-1, a marker of BBB integrity. These data highlight how even short-duration spaceflight can disrupt human and murine physiology and identify spaceflight biomarkers that can guide countermeasure development.


Asunto(s)
Coagulación Sanguínea , Barrera Hematoencefálica , Encéfalo , Homeostasis , Estrés Oxidativo , Vuelo Espacial , Animales , Humanos , Encéfalo/metabolismo , Barrera Hematoencefálica/metabolismo , Ratones , Coagulación Sanguínea/fisiología , Masculino , Secretoma/metabolismo , Ratones Endogámicos C57BL , Vesículas Extracelulares/metabolismo , Proteómica/métodos , Biomarcadores/metabolismo , Biomarcadores/sangre , Femenino , Adulto , Proteínas Sanguíneas/metabolismo , Persona de Mediana Edad , Leucocitos Mononucleares/metabolismo , Proteoma/metabolismo
18.
Nat Commun ; 15(1): 4964, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862509

RESUMEN

The SpaceX Inspiration4 mission provided a unique opportunity to study the impact of spaceflight on the human body. Biospecimen samples were collected from four crew members longitudinally before (Launch: L-92, L-44, L-3 days), during (Flight Day: FD1, FD2, FD3), and after (Return: R + 1, R + 45, R + 82, R + 194 days) spaceflight, spanning a total of 289 days across 2021-2022. The collection process included venous whole blood, capillary dried blood spot cards, saliva, urine, stool, body swabs, capsule swabs, SpaceX Dragon capsule HEPA filter, and skin biopsies. Venous whole blood was further processed to obtain aliquots of serum, plasma, extracellular vesicles and particles, and peripheral blood mononuclear cells. In total, 2,911 sample aliquots were shipped to our central lab at Weill Cornell Medicine for downstream assays and biobanking. This paper provides an overview of the extensive biospecimen collection and highlights their processing procedures and long-term biobanking techniques, facilitating future molecular tests and evaluations.As such, this study details a robust framework for obtaining and preserving high-quality human, microbial, and environmental samples for aerospace medicine in the Space Omics and Medical Atlas (SOMA) initiative, which can aid future human spaceflight and space biology experiments.


Asunto(s)
Bancos de Muestras Biológicas , Vuelo Espacial , Manejo de Especímenes , Humanos , Manejo de Especímenes/métodos , Astronautas
19.
Precis Clin Med ; 7(1): pbae007, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38634106

RESUMEN

Background: The Inspiration4 (I4) mission, the first all-civilian orbital flight mission, investigated the physiological effects of short-duration spaceflight through a multi-omic approach. Despite advances, there remains much to learn about human adaptation to spaceflight's unique challenges, including microgravity, immune system perturbations, and radiation exposure. Methods: To provide a detailed genetics analysis of the mission, we collected dried blood spots pre-, during, and post-flight for DNA extraction. Telomere length was measured by quantitative PCR, while whole genome and cfDNA sequencing provided insight into genomic stability and immune adaptations. A robust bioinformatic pipeline was used for data analysis, including variant calling to assess mutational burden. Result: Telomere elongation occurred during spaceflight and shortened after return to Earth. Cell-free DNA analysis revealed increased immune cell signatures post-flight. No significant clonal hematopoiesis of indeterminate potential (CHIP) or whole-genome instability was observed. The long-term gene expression changes across immune cells suggested cellular adaptations to the space environment persisting months post-flight. Conclusion: Our findings provide valuable insights into the physiological consequences of short-duration spaceflight, with telomere dynamics and immune cell gene expression adapting to spaceflight and persisting after return to Earth. CHIP sequencing data will serve as a reference point for studying the early development of CHIP in astronauts, an understudied phenomenon as previous studies have focused on career astronauts. This study will serve as a reference point for future commercial and non-commercial spaceflight, low Earth orbit (LEO) missions, and deep-space exploration.

20.
Nat Commun ; 15(1): 4954, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862516

RESUMEN

Spaceflight induces an immune response in astronauts. To better characterize this effect, we generated single-cell, multi-ome, cell-free RNA (cfRNA), biochemical, and hematology data for the SpaceX Inspiration4 (I4) mission crew. We found that 18 cytokines/chemokines related to inflammation, aging, and muscle homeostasis changed after spaceflight. In I4 single-cell multi-omics data, we identified a "spaceflight signature" of gene expression characterized by enrichment in oxidative phosphorylation, UV response, immune function, and TCF21 pathways. We confirmed the presence of this signature in independent datasets, including the NASA Twins Study, the I4 skin spatial transcriptomics, and 817 NASA GeneLab mouse transcriptomes. Finally, we observed that (1) T cells showed an up-regulation of FOXP3, (2) MHC class I genes exhibited long-term suppression, and (3) infection-related immune pathways were associated with microbiome shifts. In summary, this study reveals conserved and distinct immune disruptions occurring and details a roadmap for potential countermeasures to preserve astronaut health.


Asunto(s)
Análisis de la Célula Individual , Vuelo Espacial , Transcriptoma , Animales , Femenino , Masculino , Humanos , Ratones , Astronautas , Citocinas/metabolismo , Linfocitos T/inmunología , Factores Sexuales , Perfilación de la Expresión Génica , Fosforilación Oxidativa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA