Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Arch Microbiol ; 206(7): 328, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38935150

RESUMEN

Marine hydrocarbonoclastic bacteria can use polycyclic aromatic hydrocarbons as carbon and energy sources, that makes these bacteria highly attractive for bioremediation in oil-polluted waters. However, genomic and metabolic differences between species are still the subject of study to understand the evolution and strategies to degrade PAHs. This study presents Rhodococcus ruber MSA14, an isolated bacterium from marine sediments in Baja California, Mexico, which exhibits adaptability to saline environments, a high level of intrinsic pyrene tolerance (> 5 g L- 1), and efficient degradation of pyrene (0.2 g L- 1) by 30% in 27 days. Additionally, this strain demonstrates versatility by using naphthalene and phenanthrene as individual carbon sources. The genome sequencing of R. ruber MSA14 revealed a genome spanning 5.45 Mbp, a plasmid of 72 kbp, and three putative megaplasmids, lengths between 110 and 470 Kbp. The bioinformatics analysis of the R. ruber MSA14 genome revealed 56 genes that encode enzymes involved in the peripheral and central pathways of aromatic hydrocarbon catabolism, alkane, alkene, and polymer degradation. Within its genome, R. ruber MSA14 possesses genes responsible for salt tolerance and siderophore production. In addition, the genomic analysis of R. ruber MSA14 against 13 reference genomes revealed that all compared strains have at least one gene involved in the alkanes and catechol degradation pathway. Overall, physiological assays and genomic analysis suggest that R. ruber MSA14 is a new haloalkalitolerant and hydrocarbonoclastic strain toward a wide range of hydrocarbons, making it a promising candidate for in-depth characterization studies and bioremediation processes as part of a synthetic microbial consortium, as well as having a better understanding of the catabolic potential and functional diversity among the Rhodococci group.


Asunto(s)
Biodegradación Ambiental , Genoma Bacteriano , Genómica , Sedimentos Geológicos , Hidrocarburos Policíclicos Aromáticos , Rhodococcus , Rhodococcus/genética , Rhodococcus/metabolismo , Hidrocarburos Policíclicos Aromáticos/metabolismo , Sedimentos Geológicos/microbiología , Naftalenos/metabolismo , Filogenia , Fenantrenos/metabolismo , Tolerancia a la Sal , Pirenos
2.
Infection ; 51(5): 1549-1555, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37058241

RESUMEN

PURPOSE: The swift expansion of the BW.1 SARS-CoV-2 variant coincided with a rapid increase of COVID-19 cases occurring in Southeast Mexico in October, 2022, which marked the start of Mexico's sixth epidemiological wave. In Yucatan, up to 92% (58 of 73) of weekly sequenced genomes between epidemiological week 42 and 47 were identified as either BW.1 or its descendant, BW.1.1 in the region, during the last trimester of 2022. In the current study, a comprehensive genomic comparison was carried out to characterize the evolutionary history of the BW lineage, identifying its origins and its most important mutations. METHODS: An alignment of all the genomes of the BW lineage and its parental BA.5.6.2 variant was carried out to identify their mutations. A phylogenetic and ancestral sequence reconstruction analysis with geographical inference, as well as a longitudinal analysis of point mutations, were performed to trace back their origin and contrast them with key RBD mutations in variant BQ.1, one of the fastest-growing lineages to date. RESULTS: Our ancestral reconstruction analysis portrayed Mexico as the most probable origin of the BW.1 and BW.1.1 variants. Two synonymous substitutions, T7666C and C14599T, support their Mexican origin, whereas other two mutations are specific to BW.1: S:N460K and ORF1a:V627I. Two additional substitutions and a deletion are found in its descending subvariant, BW.1.1. Mutations found in the receptor binding domain, S:K444T, S:L452R, S:N460K, and S:F486V in BW.1 have been reported to be relevant for immune escape and are also key mutations in the BQ.1 lineage. CONCLUSIONS: BW.1 appears to have arisen in the Yucatan Peninsula in Southeast Mexico sometime around July 2022 during the fifth COVID-19 wave. Its rapid growth may be in part explained by the relevant escape mutations also found in BQ.1.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , México/epidemiología , COVID-19/epidemiología , Filogenia , Mutación
3.
Int Microbiol ; 25(1): 99-110, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34269948

RESUMEN

Microbial biodiversity is represented by a variety of genomic landscapes adapted to dissimilar environments on Earth. These genomic landscapes contain functional signatures connected with the community phenotypes. Here, we assess the genomic microbial diversity landscape at a high-resolution level of a polluted river-associated microbiome (Morelos, México), cultured in a medium enriched with anthraquinone Deep Blue 35 dye. We explore the resultant textile dye microbiome to infer links between predicted biodegradative functions, and metagenomic and metabolic potential, especially using the information obtained from individual reconstructed genomes. By using Hi-C proximity-ligation deconvolution method, we deconvoluted 97 genome composites (80% potentially novel species). The main taxonomic determinants were Methanobacterium, Clostridium, and Cupriavidus genera constituting 50, 22, and 11% of the total community profile. Also, we observed a rare biosphere of novel taxa without clear taxonomic standing. Removal of 50% chemical oxygen demand with 23% decolorization was observed after 30 days of dye enrichment. Genes related to catalase-peroxidase, polyphenol oxidase, and laccase enzymes were predicted as associated with textile dye biodegradation phenotype under our study conditions, highlighting the potential of metagenome-wide analysis to predict biodegradative determinants. This study prompts high-resolution screening of individual genomes within textile dye river sediment microbiomes or complex communities under environmental pressures.


Asunto(s)
Microbiota , Biodegradación Ambiental , Metagenoma , Fenotipo , Textiles
4.
BMC Infect Dis ; 22(1): 792, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36261802

RESUMEN

BACKGROUND: SARS-CoV-2 infections have a wide spectrum of clinical manifestations whose causes are not completely understood. Some human conditions predispose to severe outcome, like old age or the presence of comorbidities, but many other facets, including coinfections with other viruses, remain poorly characterized. METHODS: In this study, the eukaryotic fraction of the respiratory virome of 120 COVID-19 patients was characterized through whole metagenomic sequencing. RESULTS: Genetic material from respiratory viruses was detected in 25% of all samples, whereas human viruses other than SARS-CoV-2 were found in 80% of them. Samples from hospitalized and deceased patients presented a higher prevalence of different viruses when compared to ambulatory individuals. Small circular DNA viruses from the Anneloviridae (Torque teno midi virus 8, TTV-like mini virus 19 and 26) and Cycloviridae families (Human associated cyclovirus 10), Human betaherpesvirus 6, were found to be significantly more abundant in samples from deceased and hospitalized patients compared to samples from ambulatory individuals. Similarly, Rotavirus A, Measles morbillivirus and Alphapapilomavirus 10 were significantly more prevalent in deceased patients compared to hospitalized and ambulatory individuals. CONCLUSIONS: Results show the suitability of using metagenomics to characterize a broader peripheric virological landscape of the eukaryotic virome in SARS-CoV-2 infected patients with distinct disease outcomes. Identified prevalent viruses in hospitalized and deceased patients may prove important for the targeted exploration of coinfections that may impact prognosis.


Asunto(s)
COVID-19 , Coinfección , Virus , Humanos , SARS-CoV-2/genética , Coinfección/epidemiología , Virus/genética , ADN Circular , Índice de Severidad de la Enfermedad
6.
J Virol ; 94(18)2020 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-32641486

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic has affected most countries in the world. Studying the evolution and transmission patterns in different countries is crucial to enabling implementation of effective strategies for disease control and prevention. In this work, we present the full genome sequence for 17 SARS-CoV-2 isolates corresponding to the earliest sampled cases in Mexico. Global and local phylogenomics, coupled with mutational analysis, consistently revealed that these viral sequences are distributed within 2 known lineages, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineage A/G, containing mostly sequences from North America, and lineage B/S, containing mainly sequences from Europe. Based on the exposure history of the cases and on the phylogenomic analysis, we characterized 14 independent introduction events. Additionally, three cases with no travel history were identified. We found evidence that two of these cases represented local transmission cases occurring in Mexico during mid-March 2020, denoting the earliest events described for the country. Within this local transmission cluster, we also identified an H49Y amino acid change in the Spike protein. This mutation represents a homoplasy occurring independently through time and space and may function as a molecular marker to follow any further spread of these viral variants throughout the country. Our results provide a general picture of the SARS-CoV-2 variants introduced at the beginning of the outbreak in Mexico, setting the foundation for future surveillance efforts.IMPORTANCE Understanding the introduction, spread, and establishment of SARS-CoV-2 within distinct human populations as well as the evolution of the pandemics is crucial to implement effective control strategies. In this work, we report that the initial virus strains introduced in Mexico came from Europe and the United States and that the virus was circulating locally in the country as early as mid-March. We also found evidence for early local transmission of strains with a H49Y mutation in the Spike protein, which could be further used as a molecular marker to follow viral spread within the country and the region.


Asunto(s)
Betacoronavirus/genética , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/virología , Variación Genética , Genoma Viral , Genómica , Neumonía Viral/epidemiología , Neumonía Viral/virología , Sustitución de Aminoácidos , Betacoronavirus/clasificación , COVID-19 , Biología Computacional/métodos , Infecciones por Coronavirus/transmisión , Genómica/métodos , Humanos , México/epidemiología , Mutación , Pandemias , Filogenia , Neumonía Viral/transmisión , SARS-CoV-2
7.
Arch Virol ; 166(11): 3173-3177, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34448936

RESUMEN

SARS-CoV-2 variants emerged in late 2020, and at least three variants of concern (B.1.1.7, B.1.351, and P1) have been reported by WHO. These variants have several substitutions in the spike protein that affect receptor binding; they exhibit increased transmissibility and may be associated with reduced vaccine effectiveness. In the present work, we report the identification of a potential variant of interest, harboring the mutations T478K, P681H, and T732A in the spike protein, within the newly named lineage B.1.1.519, that rapidly outcompeted the preexisting variants in Mexico and has been the dominant virus in the country during the first trimester of 2021.


Asunto(s)
COVID-19/epidemiología , COVID-19/virología , SARS-CoV-2/genética , COVID-19/transmisión , Genoma Viral/genética , Humanos , México/epidemiología , Mutación , Filogenia , Prevalencia , SARS-CoV-2/clasificación , SARS-CoV-2/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/genética
8.
Plant Dis ; 105(9): 2618-2627, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33393360

RESUMEN

Chilhuacle negro chili (Capsicum annuum L.) is an ancient Mexican landrace that is deeply linked to the culinary heritage of the country. Because of the high profitability and uniqueness of this crop, the Universidad Autónoma del Estado de Morelos is exploring its production in controlled environments. In the crop cycles of 2018 to 2019, the production of chilhuacle negro plants was seriously affected by an unidentified pathogen causing fruit rot, which reduced its quality, yield, and market value. Therefore, the main objective of this work was to study and characterize the fruit microbiota, which could help reveal the causal agent of this disease. Using DNA metabarcoding coupled with Illumina and nanopore sequencing technologies, we collected and analyzed both healthy and infected chili fruit, along with greenhouse bioaerosols. We also explored the bacterial and fungal microbiota by using microbiological techniques to isolate some of the culturable bacterial and fungal species. Our results suggest that the seedborne fungus Alternaria alternata is activated during the maturation stage of chilhuacle negro fruit, triggering a microbiome imbalance, which may in turn enable the establishment of other opportunistic pathogenic fungi during fruit decay, such as Mucor sp. To our knowledge, this is the first study of the chilhuacle negro chili microbiome, which can shed some light on our understanding of one of the main diseases that affect this valuable crop.


Asunto(s)
Capsicum , Micobioma , Negro o Afroamericano , Frutas , Humanos
9.
J Bacteriol ; 202(7)2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-31932315

RESUMEN

Activation of the two-component system formed by CckA, ChpT, and CtrA (kinase, phosphotransferase, and response regulator, respectively) in Rhodobacter sphaeroides does not occur under the growth conditions commonly used in the laboratory. However, it is possible to isolate a gain-of-function mutant in CckA that turns the system on. Using massive parallel transcriptome sequencing (RNA-seq), we identified 321 genes that are differentially regulated by CtrA. From these genes, 239 were positively controlled and 82 were negatively regulated. Genes encoding the Fla2 polar flagella and gas vesicle proteins are strongly activated by CtrA. Genes involved in stress responses as well as several transcriptional factors are also positively controlled, whereas the photosynthetic and CO2 fixation genes are repressed. Potential CtrA-binding sites were bioinformatically identified, leading to the proposal that at least 81 genes comprise the direct regulon. Based on our results, we ponder that the transcriptional response orchestrated by CtrA enables a lifestyle in which R. sphaeroides will effectively populate the surface layer of a water body enabled by gas vesicles and will remain responsive to chemotactic stimuli using the chemosensoring system that controls the Fla2 flagellum. Simultaneously, fine-tuning of photosynthesis and stress responses will reduce the damage caused by heat and high light intensity in this water stratum. In summary, in this bacterium CtrA has evolved to control physiological responses that allow its adaptation to a particular lifestyle instead of controlling the cell cycle as occurs in other species.IMPORTANCE Cell motility in Alphaproteobacteria is frequently controlled by the CckA, ChpT, and CtrA two-component system. Under the growth conditions commonly used in the laboratory, ctrA is transcriptionally inactive in Rhodobacter sphaeroides, and motility depends on the Fla1 flagellar system that was acquired by a horizontal transfer event. Likely, the incorporation of this flagellar system released CtrA from the strong selective pressure of being the main motility regulator, allowing this two-component system to specialize and respond to some specific conditions. Identifying the genes that are directly regulated by CtrA could help us understand the conditions in which the products of this regulon are required. Massive parallel transcriptome sequencing (RNA-seq) revealed that CtrA orchestrates an adaptive response that contributes to the colonization of a particular environmental niche.


Asunto(s)
Adaptación Biológica , Regulación Bacteriana de la Expresión Génica , Rhodobacter sphaeroides/fisiología , Factores de Transcripción/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biología Computacional , Secuencia Conservada , Perfilación de la Expresión Génica , Fotosíntesis , Posición Específica de Matrices de Puntuación , Regiones Promotoras Genéticas , Secuencias Repetitivas de Ácidos Nucleicos , Factores de Transcripción/metabolismo
10.
Exp Cell Res ; 375(1): 31-41, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30557557

RESUMEN

Studies have described the presence of pluripotent markers in vivo and in vitro in human amnion. However, the amnion can be divided into reflected, placental and umbilical regions that are anatomically and functionally heterogeneous. Here, we evaluated the expression of pluripotency markers in tissue and cultivated cells in vitro of different regions of human amnion. To this end, we determined the presence of the core pluripotency factors OCT-4, NANOG and SOX-2 by immunofluorescence and RT-PCR and also performed transcriptome analysis of the different regions of amnion tissue. We identified the mRNA and protein of the pluripotency factors in the different regions of human amnion tissue. However, the OCT-4 and NANOG immunolocalization was cytoplasmic, whereas SOX-2 immunolocalization was nuclear regardless of the region analyzed. Moreover, we found three subpopulations of cells in the in vitro cultures of reflected and placental amnion: cells with immunostaining only in the nucleus, only in the cytoplasm, or in both compartments. Yet no statistically significant differences were found between the reflected and placental amnion. These results suggest a homogeneous distribution of the pluripotency transcription factors of the different regions of human amnion to isolate stem cells that can be used in regenerative medicine.


Asunto(s)
Amnios/metabolismo , Placenta/metabolismo , Células Madre Pluripotentes/metabolismo , Transcriptoma/genética , Amnios/crecimiento & desarrollo , Biomarcadores/metabolismo , Diferenciación Celular/genética , Células Cultivadas , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Proteína Homeótica Nanog/genética , Factor 3 de Transcripción de Unión a Octámeros/genética , Embarazo , Factores de Transcripción SOXB1/genética
11.
Nature ; 496(7443): 57-63, 2013 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-23485966

RESUMEN

Tapeworms (Cestoda) cause neglected diseases that can be fatal and are difficult to treat, owing to inefficient drugs. Here we present an analysis of tapeworm genome sequences using the human-infective species Echinococcus multilocularis, E. granulosus, Taenia solium and the laboratory model Hymenolepis microstoma as examples. The 115- to 141-megabase genomes offer insights into the evolution of parasitism. Synteny is maintained with distantly related blood flukes but we find extreme losses of genes and pathways that are ubiquitous in other animals, including 34 homeobox families and several determinants of stem cell fate. Tapeworms have specialized detoxification pathways, metabolism that is finely tuned to rely on nutrients scavenged from their hosts, and species-specific expansions of non-canonical heat shock proteins and families of known antigens. We identify new potential drug targets, including some on which existing pharmaceuticals may act. The genomes provide a rich resource to underpin the development of urgently needed treatments and control.


Asunto(s)
Adaptación Fisiológica/genética , Cestodos/genética , Genoma de los Helmintos/genética , Parásitos/genética , Animales , Evolución Biológica , Cestodos/efectos de los fármacos , Cestodos/fisiología , Infecciones por Cestodos/tratamiento farmacológico , Infecciones por Cestodos/metabolismo , Secuencia Conservada/genética , Echinococcus granulosus/genética , Echinococcus multilocularis/efectos de los fármacos , Echinococcus multilocularis/genética , Echinococcus multilocularis/metabolismo , Genes de Helminto/genética , Genes Homeobox/genética , Proteínas HSP70 de Choque Térmico/genética , Humanos , Hymenolepis/genética , Redes y Vías Metabólicas/genética , Terapia Molecular Dirigida , Parásitos/efectos de los fármacos , Parásitos/fisiología , Proteoma/genética , Células Madre/citología , Células Madre/metabolismo , Taenia solium/genética
12.
Mol Genet Genomics ; 293(5): 1205-1216, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29948331

RESUMEN

It has been presumed that increased susceptibility in Mexicans to type 2 diabetes (T2D) is attributed to the Native American genetic ancestry. Nonetheless, it is not known if there are private genetic variants that confer susceptibility to develop T2D in our population. The Maya indigenous group has the highest proportion of Native American ancestry (98%) which makes it a representative group of the original peoples of Mexico. Thus, the aim of the present study is to identify new genetic variants associated with T2D in Maya families. Whole-exome sequencing was performed on DNA samples from Maya families with a third-generation family history of T2D only in one parental line. Four variants were identified for APOB, PPP1R3A, TPPP2, and GPR1 genes, and were further tested for association with T2D in 600 unrelated Maya in a case-control study. For the first time, rs1799999 in PPP1R3A was associated with risk of T2D in Mayan Mexican individuals (OR = 1.625, P = 0.014). Interestingly, carriers of rs1799999 presented increased values of HOMA-IR. In addition, rs1801702 in APOB was associated with total cholesterol and LDL-C (P = 0.019 and P = 0.020, respectively) in normoglycemic individuals; rs3732083 in GPR1 with HOMA-IR (P = 0.016) and rs9624 in TPPP2 with total cholesterol and triglycerides (P = 0.002 and P = 0.005, respectively) in T2D subjects. Overall, these findings support the idea that there are other genetic variants yet to be described, involved in T2D development in Maya population, being insulin resistance and lipid metabolism the main mechanisms implicated. Thus, these results can contribute to the understanding of diabetes genetic background in Mexican population.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Exoma , Predisposición Genética a la Enfermedad , Fosfoproteínas Fosfatasas/genética , Polimorfismo de Nucleótido Simple , Grupos de Población/genética , Adulto , Anciano , Estudios de Casos y Controles , Diabetes Mellitus Tipo 2/epidemiología , Femenino , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Resistencia a la Insulina , Masculino , México/epidemiología , Persona de Mediana Edad , Linaje , Factores de Riesgo
13.
Extremophiles ; 22(6): 903-916, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30120599

RESUMEN

Bacterial and archaeal community structure of five microbial communities, developing at different salinities in Baja California Sur, Mexico, were characterized by 16S rRNA sequencing. The response of the microbial community to artificial changes in salinity-sulfate concentrations and to addition of trimethylamine was also evaluated in microcosm experiments. Ordination analyses of the microbial community structure showed that microbial composition was distinctive for each hypersaline site. Members of bacteria were dominated by Bacteroidetes and Proteobacteria phyla, while Halobacteria of the Euryarchaeota phylum was the most represented class of archaea for all the environmental samples. At a higher phylogenetic resolution, methanogenic communities were dominated by members of the Methanosarcinales, Methanobacteriales and Methanococcales orders. Incubation experiments showed that putative hydrogenotrophic methanogens of the Methanomicrobiales increased in abundance only under lowest salinity and sulfate concentrations. Trimethylamine addition effectively increased the abundance of methylotrophic members from the Methanosarcinales, but also increased the relative abundance of the Thermoplasmata class, suggesting the potential capability of these microorganisms to use trimethylamine in hypersaline environments. These results contribute to the knowledge of microbial diversity in hypersaline environments from Baja California Sur, Mexico, and expand upon the available information for uncultured methanogenic archaea in these ecosystems.


Asunto(s)
Metano/biosíntesis , Microbiota , Salinidad , Bacteroidetes/genética , Bacteroidetes/aislamiento & purificación , Bacteroidetes/metabolismo , Euryarchaeota/genética , Euryarchaeota/aislamiento & purificación , Euryarchaeota/metabolismo
14.
Nature ; 482(7384): 232-6, 2012 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-22278056

RESUMEN

The concept of disease-specific chemotherapy was developed a century ago. Dyes and arsenical compounds that displayed selectivity against trypanosomes were central to this work, and the drugs that emerged remain in use for treating human African trypanosomiasis (HAT). The importance of understanding the mechanisms underlying selective drug action and resistance for the development of improved HAT therapies has been recognized, but these mechanisms have remained largely unknown. Here we use all five current HAT drugs for genome-scale RNA interference target sequencing (RIT-seq) screens in Trypanosoma brucei, revealing the transporters, organelles, enzymes and metabolic pathways that function to facilitate antitrypanosomal drug action. RIT-seq profiling identifies both known drug importers and the only known pro-drug activator, and links more than fifty additional genes to drug action. A bloodstream stage-specific invariant surface glycoprotein (ISG75) family mediates suramin uptake, and the AP1 adaptin complex, lysosomal proteases and major lysosomal transmembrane protein, as well as spermidine and N-acetylglucosamine biosynthesis, all contribute to suramin action. Further screens link ubiquinone availability to nitro-drug action, plasma membrane P-type H(+)-ATPases to pentamidine action, and trypanothione and several putative kinases to melarsoprol action. We also demonstrate a major role for aquaglyceroporins in pentamidine and melarsoprol cross-resistance. These advances in our understanding of mechanisms of antitrypanosomal drug efficacy and resistance will aid the rational design of new therapies and help to combat drug resistance, and provide unprecedented molecular insight into the mode of action of antitrypanosomal drugs.


Asunto(s)
Resistencia a Medicamentos/genética , Tripanocidas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Tripanosomiasis Africana/tratamiento farmacológico , Acuagliceroporinas/deficiencia , Acuagliceroporinas/metabolismo , Eflornitina/farmacología , Endocitosis/efectos de los fármacos , Glicosilación/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Melarsoprol/farmacología , Nifurtimox/farmacología , Pentamidina/farmacología , Interferencia de ARN , Suramina/farmacología , Tripanocidas/uso terapéutico , Trypanosoma brucei brucei/citología , Trypanosoma brucei brucei/enzimología , Trypanosoma brucei brucei/metabolismo , Tripanosomiasis Africana/genética
15.
Appl Microbiol Biotechnol ; 102(5): 2251-2267, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29372297

RESUMEN

Enterococcus spp. are present in the native microbiota of many traditional fermented foods. Their ability to produce antibacterial compounds, mainly against Listeria monocytogenes, has raised interest recently. However, there is scarce information about their proteolytic and lipolytic potential, and their biotechnological application is currently limited because enterococcal strains have been related to nosocomial infections. In this work, next-generation sequencing and optimised bioinformatic pipelines were used to annotate the genomes of two Enterococcus strains-one E. faecium and one E. faecalis-isolated from the Mexican artisanal ripened Cotija cheese. A battery of genes involved in their proteolytic system was annotated. Genes coding for lipases, esterases and other enzymes whose final products contribute to cheese aroma and flavour were identified as well. As for the production of antibacterial compounds, several peptidoglycan hydrolase- and bacteriocin-coding genes were identified in both genomes experimentally and by bioinformatic analyses. E. faecalis showed resistance to aminoglycosides and E. faecium to aminoglycosides and macrolides, as predicted by the genome functional annotation. No pathogenicity islands were found in any of the strains, although traits such as the ability of biofilm formation and cell aggregation were observed. Finally, a comparative genomic analysis was able to discriminate between the food strains isolated and nosocomial strains. In summary, pathogenic strains are resistant to a wide range of antibiotics and contain virulence factors that cause host damage; in contrast, food strains display less antibiotic resistance, include genes that encode class II bacteriocins and express virulence factors associated with host colonisation rather than invasion.


Asunto(s)
Queso/microbiología , Enterococcus/aislamiento & purificación , Enterococcus/metabolismo , Animales , Antibacterianos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteriocinas/biosíntesis , Bovinos , Queso/análisis , Enterococcus/genética , Genoma Bacteriano , Genómica , Leche/química , Leche/microbiología , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
16.
Genome Res ; 24(10): 1676-85, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25015382

RESUMEN

Global production of chickens has trebled in the past two decades and they are now the most important source of dietary animal protein worldwide. Chickens are subject to many infectious diseases that reduce their performance and productivity. Coccidiosis, caused by apicomplexan protozoa of the genus Eimeria, is one of the most important poultry diseases. Understanding the biology of Eimeria parasites underpins development of new drugs and vaccines needed to improve global food security. We have produced annotated genome sequences of all seven species of Eimeria that infect domestic chickens, which reveal the full extent of previously described repeat-rich and repeat-poor regions and show that these parasites possess the most repeat-rich proteomes ever described. Furthermore, while no other apicomplexan has been found to possess retrotransposons, Eimeria is home to a family of chromoviruses. Analysis of Eimeria genes involved in basic biology and host-parasite interaction highlights adaptations to a relatively simple developmental life cycle and a complex array of co-expressed surface proteins involved in host cell binding.


Asunto(s)
Eimeria/genética , Genoma de Protozoos , Proteínas Protozoarias/genética , Animales , Línea Celular , Pollos , Mapeo Cromosómico , Coccidiosis/parasitología , Coccidiosis/veterinaria , Eimeria/clasificación , Perfilación de la Expresión Génica , Filogenia , Enfermedades de las Aves de Corral/parasitología , Proteoma , Sintenía
17.
Mol Cell Proteomics ; 13(10): 2736-51, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24994561

RESUMEN

Hookworms infect more than 700 million people worldwide and cause more morbidity than most other human parasitic infections. Nippostrongylus brasiliensis (the rat hookworm) has been used as an experimental model for human hookworm because of its similar life cycle and ease of maintenance in laboratory rodents. Adult N. brasiliensis, like the human hookworm, lives in the intestine of the host and releases excretory/secretory products (ESP), which represent the major host-parasite interface. We performed a comparative proteomic analysis of infective larval (L3) and adult worm stages of N. brasiliensis to gain insights into the molecular bases of host-parasite relationships and determine whether N. brasiliensis could indeed serve as an appropriate model for studying human hookworm infections. Proteomic data were matched to a transcriptomic database assembled from 245,874,892 Illumina reads from different developmental stages (eggs, L3, L4, and adult) of N. brasiliensis yielding∼18,426 unigenes with 39,063 possible isoform transcripts. From this analysis, 313 proteins were identified from ESPs by LC-MS/MS-52 in the L3 and 261 in the adult worm. Most of the proteins identified in the study were stage-specific (only 13 proteins were shared by both stages); in particular, two families of proteins-astacin metalloproteases and CAP-domain containing SCP/TAPS-were highly represented in both L3 and adult ESP. These protein families are present in most nematode groups, and where studied, appear to play roles in larval migration and evasion of the host's immune response. Phylogenetic analyses of defined protein families and global gene similarity analyses showed that N. brasiliensis has a greater degree of conservation with human hookworm than other model nematodes examined. These findings validate the use of N. brasiliensis as a suitable parasite for the study of human hookworm infections in a tractable animal model.


Asunto(s)
Ancylostomatoidea/crecimiento & desarrollo , Tracto Gastrointestinal/parasitología , Proteínas del Helminto/metabolismo , Estadios del Ciclo de Vida , Proteoma/análisis , Ancylostomatoidea/metabolismo , Animales , Secuencia de Bases , Secuencia Conservada , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Filogenia , Proteoma/metabolismo , Proteómica/métodos , Ratas , Ratas Sprague-Dawley , Análisis de Secuencia de ARN
18.
Food Microbiol ; 57: 116-27, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27052710

RESUMEN

Cotija cheese is a Mexican handcrafted product made from raw cow milk whose ripening process occurs spontaneously and, presumably, it is influenced by environmental conditions. Its sensory characteristics and safety are probably the result of the balance between microbial populations and their metabolic capacity. In this work, we studied the dominance and richness of the bacteria in the Cotija cheese microbiome, as well as their metabolic potential by high-throughput sequencing. By the analysis of 16S ribosomal sequences, it was found that this metagenome is composed mainly of three dominant genera: Lactobacillus, Leuconostoc and Weissella, and more than 500 of non-dominant genera grouped in 31 phyla of both bacteria and archaea. The analysis of single-copy marker genes reported a similar result for dominant genera, although with greater resolution that reached the species level. Pathogenic bacteria such as Salmonella, Listeria monocytogenes, Brucella or Mycobacterium were not found. The Cotija cheese microbiome has the metabolic capacity for the synthesis of a wide range of flavor compounds, mainly involved with the metabolism of branched chain amino acids and free fatty acids. Genes associated with bacteriocin production and immunity were also found. Arguably, this is one of the most diverse metagenomes among the microbial communities related to fermented products.


Asunto(s)
Archaea/aislamiento & purificación , Bacterias/aislamiento & purificación , Queso/microbiología , Microbiota , Leche/microbiología , Animales , Archaea/clasificación , Archaea/genética , Archaea/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Biodiversidad , Bovinos , Metagenómica
19.
Genome Res ; 21(6): 915-24, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21363968

RESUMEN

African trypanosomes are major pathogens of humans and livestock and represent a model for studies of unusual protozoal biology. We describe a high-throughput phenotyping approach termed RNA interference (RNAi) target sequencing, or RIT-seq that, using Illumina sequencing, maps fitness-costs associated with RNAi. We scored the abundance of >90,000 integrated RNAi targets recovered from trypanosome libraries before and after induction of RNAi. Data are presented for 7435 protein coding sequences, >99% of a non-redundant set in the Trypanosoma brucei genome. Analysis of bloodstream and insect life-cycle stages and differentiated libraries revealed genome-scale knockdown profiles of growth and development, linking thousands of previously uncharacterized and "hypothetical" genes to essential functions. Genes underlying prominent features of trypanosome biology are highlighted, including the constitutive emphasis on post-transcriptional gene expression control, the importance of flagellar motility and glycolysis in the bloodstream, and of carboxylic acid metabolism and phosphorylation during differentiation from the bloodstream to the insect stage. The current data set also provides much needed genetic validation to identify new drug targets. RIT-seq represents a versatile new tool for genome-scale functional analyses and for the exploitation of genome sequence data.


Asunto(s)
Genoma de Protozoos/genética , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Fenotipo , Interferencia de ARN , Análisis de Secuencia de ADN/métodos , Trypanosoma brucei brucei/genética , Biología Computacional , Cartilla de ADN/genética , Biblioteca de Genes , Aptitud Genética/genética , Plásmidos/genética , Trypanosoma brucei brucei/fisiología
20.
Microbiol Resour Announc ; : e0033524, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38916305

RESUMEN

We report the draft genome sequence of three marine bacteria belonging to Pseudomonas and Stutzerimonas genera, with hydrocarbonoclastic metabolism for oil and monoaromatic hydrocarbon degradation. The genomic information of these organisms contributes to the knowledge of natural and polluted marine environments with ubiquitous presence of hydrocarbons as a selective pressure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA