Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cells Tissues Organs ; 210(2): 135-150, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34218223

RESUMEN

Imbalance of homeostasis causes permanent changes in the body with time. The central nervous system is especially prone to these changes since it possesses limited regenerative capacity. In the retina, neurons are damaged during the aging process, and this eventually leads to deterioration of vision. In our 2-year-long study, we examined genetically closely related rat individuals to disclose the hidden retinal causes of age-associated visual dysfunction. Morphometric analysis showed significant reduction of the retina thickness with aging, particularly that of the inner plexiform layer. To reveal changes between the age groups, we used immunohistochemistry against vesicular glutamate transporter 1 protein for photoreceptor and bipolar cell terminals, Brn3a for ganglion cells, calbindin 28 kDa for horizontal cells, parvalbumin for AII amacrines, protein kinase Cα for rod bipolar cells, tyrosine hydroxylase for dopaminergic cells, glial fibrillary acidic protein for glial cells, and peanut-agglutinin labeling for cones. The most significant decrease was observed in the density of photoreceptor and the ganglion cells in the aging process. By using immunocytochemistry and western blot technique, we observed that calbindin and vesicular glutamate transporter 1 protein staining do not change much with aging; tyrosine hydroxylase, parvalbumin and calretinin showed the highest immunoreactivity during the midlife period. Most interestingly, the level of glial fibrillary acidic protein also changes similarly to the previously named markers. Our results provide further evidence that protein content is modified at least in some cell populations of the rat retina, and the number of retinal cells declined with aging. We conclude that senescence alone may cause structural and functional damage in the retinal tissue.


Asunto(s)
Retina , Tirosina 3-Monooxigenasa , Animales , Neuroglía , Neuronas , Ratas , Ratas Wistar
2.
Clin Oral Investig ; 25(4): 2269-2279, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32845470

RESUMEN

OBJECTIVES: Resin-based composites may leach monomers such as triethylene-glycol dimethacrylate (TEGDMA), which could contribute to intrapulpal inflammation. The aim of this investigation was to examine whether various concentrations of TEGDMA are able to influence dentally relevant Matrix metalloproteinase (MMP)-2, MMP-8, and MMP-9 production, total collagenase/gelatinase activity in pulp cells, and suggest possible signaling mechanisms. MATERIALS AND METHODS: Pulp cells were cultured, followed by a 1-day exposure to sublethal TEGDMA concentrations (0.1, 0.2, and 0.75 mM). Total MMP activity was measured by an EnzCheck total collagenase/gelatinase assay, while the production of specific MMPs and the relative changes of phosphorylated, i.e., activated signaling protein levels of extracellular signal-regulated kinase (ERK)1/2, p38, c-Jun N-terminal kinase (JNK) were identified by western blot. Immunocytochemistry image data was also plotted and analyzed to see whether TEGDMA could possibly alter MMP production. RESULTS: An increase in activated MMP-2, MMP-8, and MMP-9 production as well as total collagenase activity was seen after a 24-h exposure to the abovementioned TEGDMA concentrations. Increase was most substantial at 0.1 (P = 0.002) and 0.2 mM (P = 0.0381). Concurrent p-ERK, p-p38, and p-JNK elevations were also detected. CONCLUSIONS: Results suggest that monomers such as TEGDMA, leached from resin-based restorative materials, activate and induce the production of dentally relevant MMPs in pulp cells. Activation of ERK1/2, p38, or JNK and MMP increase may play a role in and/or can be part of a broader stress response. Clinical relevance Induction of MMP production and activity may further be components in the mechanisms of intrapulpal monomer toxicity.


Asunto(s)
Metaloproteinasa 2 de la Matriz , Metaloproteinasa 9 de la Matriz , Células Cultivadas , Colagenasas , Metaloproteinasa 8 de la Matriz , Polietilenglicoles , Ácidos Polimetacrílicos/toxicidad
3.
Int J Mol Sci ; 22(5)2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33806574

RESUMEN

It is well established that miR-9 contributes to retinal neurogenesis. However, little is known about its presence and effects in the postnatal period. To expand our knowledge, miRNA-small RNA sequencing and in situ hybridization supported by RT-qPCR measurement were carried out. Mir-9 expression showed two peaks in the first three postnatal weeks in Wistar rats. The first peak was detected at postnatal Day 3 (P3) and the second at P10, then the expression gradually decreased until P21. Furthermore, we performed in silico prediction and established that miR-9 targets OneCut2 or synaptotagmin-17. Another two microRNAs (mir-135, mir-218) were found from databases which also target these proteins. They showed a similar tendency to mir-9; their lowest expression was at P7 and afterwards, they showed increase. We revealed that miR-9 is localized mainly in the inner retina. Labeling was observed in ganglion and amacrine cells. Additionally, horizontal cells were also marked. By dual miRNA-in situ hybridization/immunocytochemistry and qPCR, we revealed alterations in their temporal and spatial expression. Our results shed light on the significance of mir-9 regulation during the first three postnatal weeks in rat retina and suggest that miRNA could act on their targets in a stage-specific manner.


Asunto(s)
MicroARNs/metabolismo , Retina/metabolismo , Animales , Hibridación in Situ/métodos , Atención Posnatal , Ratas , Ratas Wistar , Células Ganglionares de la Retina/metabolismo , Factores de Transcripción/metabolismo
4.
Int J Mol Sci ; 22(1)2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33466261

RESUMEN

Retinal aging is the result of accumulating molecular and cellular damage with a manifest decline in visual functions. Somatostatin (SST) and pituitary adenylate cyclase-activating polypeptide (PACAP) have been implicated in neuroprotection through regulating disparate aspects of neuronal activity (survival, proliferation and renewal). The aim of the present study was to validate a transgenic model for SST-expressing amacrine cells and to investigate the chronic effect of PACAP on the aging of SSTergic and dopaminergic cells of the retina. SST-tdTomato transgenic mice that were 6, 12 and 18 months old were treated intravitreally with 100 pmol of PACAP every 3 months. The density of SST and dopaminergic amacrine cells was assessed in whole-mounted retinas. Cells displaying the transgenic red fluorescence were identified as SST-immunopositive amacrine cells. By comparing the three age groups. PACAP treatment was shown to induce a moderate elevation of cell densities in both the SST and dopaminergic cell populations in the 12- and 18-month-old animals. By contrast, the control untreated and saline-treated retinas showed a minor cell loss. In conclusion, we report a reliable transgenic model for examining SSTergic amacrine cells. The fundamental novelty of this study is that PACAP could increase the cell density in matured retinal tissue, anticipating new therapeutic potential in age-related pathological processes.


Asunto(s)
Senescencia Celular/efectos de los fármacos , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Retina/efectos de los fármacos , Animales , Recuento de Células/métodos , Neuronas Dopaminérgicas/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
5.
Int J Mol Sci ; 22(13)2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34209226

RESUMEN

As neurotransmitter, GABA is fundamental for physiological processes in the developing retina. Its synthesis enzymes are present during retinal development, although the molecular regulatory mechanisms behind the changes in expression are not entirely understood. In this study, we revealed the expression patterns of glutamic acid decarboxylase 67(GAD67) and its coding gene (GAD1) and its potential miRNA-dependent regulation during the first three postnatal weeks in rat retina. To gain insight into the molecular mechanisms, miRNA-sequencing supported by RT-qPCR and in situ hybridization were carried out. GAD1 expression shows an increasing tendency, peaking at P15. From the in silico-predicted GAD1 targeting miRNAs, only miR-23 showed similar expression patterns, which is a known regulator of GAD1 expression. For further investigation, we made an in situ hybridization investigation where both GAD67 and miR-23 also showed lower expression before P7, with the intensity of expression gradually increasing until P21. Horizontal cells at P7, amacrine cells at P15 and P21, and some cells in the ganglion cell layer at several time points were double labelled with miR-23 and GAD67. Our results highlight the complexity of these regulatory networks and the possible role of miR-23 in the regulation of GABA synthesizing enzyme expression during postnatal retina development.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Glutamato Descarboxilasa/biosíntesis , MicroARNs/biosíntesis , Retina/crecimiento & desarrollo , Animales , Glutamato Descarboxilasa/genética , MicroARNs/genética , Ratas , Ratas Wistar
6.
J Lipid Res ; 59(10): 1851-1863, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30093524

RESUMEN

Transient Receptor Potential (TRP) cation channels, like the TRP Vanilloid 1 (TRPV1) and TRP Ankyrin 1 (TRPA1), are expressed on primary sensory neurons. These thermosensor channels play a role in pain processing. We have provided evidence previously that lipid raft disruption influenced the TRP channel activation, and a carboxamido-steroid compound (C1) inhibited TRPV1 activation. Therefore, our aim was to investigate whether this compound exerts its effect through lipid raft disruption and the steroid backbone (C3) or whether altered position of the carboxamido group (C2) influences the inhibitory action by measuring Ca2+ transients on isolated neurons and calcium-uptake on receptor-expressing CHO cells. Membrane cholesterol content was measured by filipin staining and membrane polarization by fluorescence spectroscopy. Both the percentage of responsive cells and the magnitude of the intracellular Ca2+ enhancement evoked by the TRPV1 agonist capsaicin were significantly inhibited after C1 and C2 incubation, but not after C3 administration. C1 was able to reduce other TRP channel activation as well. The compounds induced cholesterol depletion in CHO cells, but only C1 induced changes in membrane polarization. The inhibitory action of the compounds on TRP channel activation develops by lipid raft disruption, and the presence and the position of the carboxamido group is essential.


Asunto(s)
Amidas/química , Activación del Canal Iónico/efectos de los fármacos , Microdominios de Membrana/efectos de los fármacos , Esteroides/química , Esteroides/farmacología , Canales de Potencial de Receptor Transitorio/antagonistas & inhibidores , Canales de Potencial de Receptor Transitorio/metabolismo , Animales , Transporte Biológico/efectos de los fármacos , Células CHO , Calcio/metabolismo , Supervivencia Celular/efectos de los fármacos , Cricetulus , Microdominios de Membrana/metabolismo , Ratones , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo
7.
Histochem Cell Biol ; 150(5): 557-566, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30088096

RESUMEN

Nowadays, increasing number of microRNAs are found to have crucial roles in various physiological processes through gene expression regulation via RNA silencing as a result of base pairing with complementary mRNA sequences. To reveal the spatial distribution of microRNA expression in tissues, in situ hybridisation is the only method developed to date. This work aims to provide a novel approach to obtain information on the possible involvement of microRNA-s in regulatory processes under experimental conditions by enhancing fluorescent detection of microRNA labelling. Developing Wistar rats were used as a model system to analyse retinal microRNA expression in the first 3 postnatal weeks. Using cryosections, the crucial elements of optimal labels were (1) the concentration and duration of proteinase K treatment, (2) hybridisation temperature of microRNA probes and (3) temperature of stringency washes. Further improvements made possible to combine our in situ hybridisation protocol with double-label immunofluorescence allowing for the simultaneous detection of microRNA-s with high sensitivity and a neuronal cell marker and/or a synaptic marker protein. Thus, the regulatory microRNA-s can be localised in an identified cell type along with its potential target protein. We believe that our protocol can be easily adapted for a variety of tissues of different origins, developmental stages and experimental conditions.


Asunto(s)
Hibridación Fluorescente in Situ , MicroARNs/análisis , Proteínas/análisis , Retina/química , Retina/citología , Animales , Biomarcadores/análisis , Inmunohistoquímica , MicroARNs/metabolismo , Neuronas/química , Neuronas/citología , Neuronas/metabolismo , Proteínas/metabolismo , Ratas , Ratas Wistar , Retina/metabolismo
8.
Glia ; 64(12): 2166-2180, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27568827

RESUMEN

Multiple sclerosis is a chronic inflammatory, demyelinating degenerative disease of the central nervous system. Current treatments target pathological immune responses to counteract the inflammatory processes. However, these drugs do not restrain the long-term progression of clinical disability. For this reason, new therapeutic approaches and identification of novel target molecules are needed to prevent demyelination or promote repair mechanisms. Transient Receptor Potential Ankyrin 1 (TRPA1) is a nonselective cation channel with relatively high Ca2+ permeability. Its pathophysiological role in central nervous system disorders has not been elucidated yet. In the present study, we aimed to assess the distribution of TRPA1 in the mouse brain and reveal its regulatory role in the cuprizone-induced demyelination. This toxin-induced model, characterized by oligodendrocyte apoptosis and subsequent primary demyelination, allows us to investigate the nonimmune aspects of multiple sclerosis. We found that TRPA1 is expressed on astrocytes in the mouse central nervous system. Interestingly, TRPA1 deficiency significantly attenuated cuprizone-induced demyelination by reducing the apoptosis of mature oligodendrocytes. Our data suggest that TRPA1 regulates mitogen-activated protein kinase pathways, as well as transcription factor c-Jun and a proapoptotic Bcl-2 family member (Bak) expression resulting in enhanced oligodendrocyte apoptosis. In conclusion, we propose that TRPA1 receptors enhancing the intracellular Ca2+ concentration modulate astrocyte functions, and influence the pro or anti-apoptotic pathways in oligodendrocytes. Inhibition of TRPA1 receptors might successfully diminish the degenerative pathology in multiple sclerosis and could be a promising therapeutic target to limit central nervous system damage in demyelinating diseases. GLIA 2016;64:2166-2180.


Asunto(s)
Apoptosis/efectos de los fármacos , Encéfalo , Cuprizona/toxicidad , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/patología , Inhibidores de la Monoaminooxidasa/toxicidad , Oligodendroglía/efectos de los fármacos , Canal Catiónico TRPA1/deficiencia , Poliposis Adenomatosa del Colon/metabolismo , Animales , Apoptosis/genética , Peso Corporal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Enfermedades Desmielinizantes/genética , Modelos Animales de Enfermedad , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Gliosis/inducido químicamente , Gliosis/genética , Ratones , Ratones Noqueados , Proteína Básica de Mielina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Canal Catiónico TRPA1/genética , Canal Catiónico TRPA1/metabolismo , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo
9.
J Vasc Res ; 53(3-4): 230-242, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27889777

RESUMEN

Acute kidney injury (AKI) remains an independent risk factor for mortality and morbidity after vascular surgery (affecting the renal arteries) or aortic surgery (requiring suprarenal aortic clamping). These types of vascular surgery produce renal ischemia/reperfusion (I/R) injury, a common cause of AKI. The present studies aimed at monitoring the course of renal I/R injury at the cellular level and investigating the efficacy of long-term preoperative and single-shot intraoperative administration of sodium pentosan polysulfate (PPS) to protect renal tissue from acute I/R injury both in native and diabetic kidneys in rats. Western blot analyses of the proapoptotic (bax) and antiapoptotic (bcl-2) signaling pathways, as well as the extent of DNA damage (phospho-p53), were performed. Oxidative stress followed upon the termination of malondialdehyde, reduced glutathione, thiol group, and superoxide dismutase plasma levels. Inflammatory changes were measured by the determination of serum tumor necrosis factor-α and interleukin-1 levels. Morphological changes were detected by histological examinations. Our results showed that the long-term administration of PPS has an advantage in reducing I/R kidney injury in diabetic rats, while high-dose, single-shot parenteral administration of PPS prior to revascularization might be useful in nondiabetic rats.


Asunto(s)
Lesión Renal Aguda/prevención & control , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Mediadores de Inflamación/sangre , Riñón/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Poliéster Pentosan Sulfúrico/farmacología , Daño por Reperfusión/prevención & control , Lesión Renal Aguda/etiología , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Biomarcadores/sangre , Daño del ADN , Diabetes Mellitus Experimental , Interleucina-1/sangre , Riñón/metabolismo , Riñón/patología , Peroxidación de Lípido/efectos de los fármacos , Masculino , Ratas Wistar , Daño por Reperfusión/etiología , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Factor de Necrosis Tumoral alfa/sangre
10.
Pharmacol Res ; 100: 101-16, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26238178

RESUMEN

Transient Receptor Potential (TRP) cation channels, such as TRP Vanilloid 1 and TRP Ankyrin repeat domain 1 (TRPV1 and TRPA1) are nocisensors playing important role to signal pain. Two "melastatin" TRP receptors, like TRPM8 and TRPM3 are also expressed in a subgroup of primary sensory neurons. These channels serve as thermosensors with unique thermal sensitivity ranges and are activated also by several exogenous and endogenous chemical ligands inducing conformational changes from various allosteric ("multisteric") sites. We analysed the role of plasma membrane microdomains of lipid rafts on isolated trigeminal (TRG) neurons and TRPV1-expressing CHO cell line by measuring agonist-induced Ca2+ transients with ratiometric technique. Stimulation-evoked calcitonin gene related peptide (CGRP) release from sensory nerve endings of the isolated rat trachea by radioimmunoassay was also measured. Lipid rafts were disrupted by cleaving sphingomyelin (SM) with sphingomyelinase (SMase), cholesterol depletion with methyl ß-cyclodextrin (MCD) and ganglioside breakdown with myriocin. It has been revealed that intracellular Ca2+ increase responses evoked by the TRPV1 agonist capsaicin, the TRPA1 agonsits allyl isothiocyanate (AITC) and formaldehyde as well as the TRPM8 activator icilin were inhibited after SMase, MCD and myriocin incubation but the response to the TRPM3 agonist pregnenolon sulphate was not altered. Extracellular SMase treatment did not influence the thapsigargin-evoked Ca2+-release from intracellular stores. Besides the cell bodies, SMase also inhibited capsaicin- or AITC-evoked CGRP release from peripheral sensory nerve terminals, this provides the first evidence for the importance of lipid raft integrity in TRPV1 and TRPA1 gating on capsaicin-sensitive nerve terminals. SM metabolites, ceramide and sphingosine, did not influence TRPA1 and TRPV1 activation on TRG neurons, TRPV1-expressing CHO cell line, and nerve terminals. We suggest, that the hydrophobic interactions between TRP receptors and membrane lipid raft interfaces modulate the opening properties of these channels and therefore, targeting this interaction might be a promising tool for drug developmental purposes.


Asunto(s)
Calcio/metabolismo , Microdominios de Membrana/metabolismo , Terminaciones Nerviosas/metabolismo , Nervios Periféricos/metabolismo , Células Receptoras Sensoriales/metabolismo , Esfingomielinas/metabolismo , Nervio Trigémino/metabolismo , Animales , Células CHO , Línea Celular , Cricetulus , Gangliósidos/metabolismo , Activación del Canal Iónico/fisiología , Ratas , Ratas Wistar , beta-Ciclodextrinas/metabolismo
11.
Apoptosis ; 19(7): 1080-98, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24722832

RESUMEN

Endoplasmic reticulum (ER) stress plays an essential role in unfolded protein response induced apoptosis contributing to several pathological conditions. Glycogen synthase kinase-3ß (GSK-3ß) plays a central role in several apoptotic signaling, including ER stress, as the active form of GSK-3ß induces apoptosis. The phosphorylation of cAMP responsive element (CRE) binding protein (CREB) Ser-133 (S133) residue is the end-point of various signaling pathways, like growth factor signaling, while the Ser-129 (S129) residue is phosphorylated by GSK-3ß. The significance of the ubiquitously expressed transcription factor CREB is demonstrated in prolonged, tunicamycin (TM)-induced ER stress in this study. In the experiments wild-type (wt) CREB, S129Ala, S133Ala or S129Ala-S133Ala mutant CREB expressing PC12 rat pheochromocytoma cell lines showed increased survival under TM-evoked prolonged ER stress compared to wtPC12 cells. After TM treatment ER stress was activated in all PC12 cell types. Lithium and SB-216763, the selective, well-known inhibitors of GSK-3ß, decreased TM-induced apoptosis and promoted cell survival. The proapoptotic BH3-only Bcl-2 family member Bcl-2-interacting mediator of cell death (Bim) level was decreased in the different CREB overexpressing PC12 cells as a result of TM treatment. CREB overexpression also inhibited the sequestration of Bim protein from tubulin molecules, as it was demonstrated in wtPC12 cells. Transient expression of wtCREB diminished TM-induced apoptosis in wtPC12, Rat-1 and primary rat vascular smooth muscle cells. These findings demonstrate a novel role of CREB in different cell types as a potent protector against ER stress.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Estrés del Retículo Endoplásmico , Tunicamicina/farmacología , Animales , Línea Celular , Supervivencia Celular , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Microtúbulos/metabolismo , Músculo Liso Vascular/citología , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Mutación , Especificidad de Órganos , Células PC12 , Ratas
12.
Cell Tissue Res ; 358(1): 65-74, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24962545

RESUMEN

PC12 rat pheochromocytoma cells are widely used to investigate signaling pathways. The p143p53PC12 cell line expresses a Val143Ala mutant p53 protein that is less capable of binding to the p53 consensus site in DNA than its wild-type counterpart. Nitric oxide (NO), depending on its concentration, is able to activate several signal transduction pathways. We used sodium nitroprusside (SNP), an NO donor compound, to analyze NO-induced cellular stress in order to clarify the mechanism and role of nitrosative stress in pathological processes, including inflammation and cancer. SNP caused cell death when applied at a concentration of 400 µM, p143p53PC12 cells showing higher sensitivity than wild-type PC12 cells. The mechanisms leading to the increased SNP-sensitivity of p143p53PC12 cells were then investigated. The 400-µM SNP treatment caused stress kinase activation, phosphorylation of the eukaryotic initiation factor eIF2α and p53 protein, proteolytic activation of protein kinase R, caspase-9, and caspase-3, p53 stabilization, CHOP induction, cytochrome c release from mitochondria, and a decline in the level of the Bcl-2 protein in both cell lines. All these SNP-induced changes were more robust and/or permanent in cells with the mutant p53 protein. We thus conclude that (1) the main cause of the SNP-induced apoptosis of PC12 cells is the repression of the bcl-2 gene, evoked through p53 stabilization, stress kinase activation, and CHOP induction; (2) the higher SNP sensitivity of p143p53PC12 cells is the consequence of the stronger and earlier activation of the intrinsic apoptotic pathway.


Asunto(s)
Sustitución de Aminoácidos , Apoptosis , Óxido Nítrico/metabolismo , Estrés Fisiológico , Proteína p53 Supresora de Tumor/metabolismo , Animales , Caspasa 3/genética , Caspasa 3/metabolismo , Caspasa 9/genética , Caspasa 9/metabolismo , Citocromos c/genética , Citocromos c/metabolismo , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Mutación Missense , Óxido Nítrico/genética , Donantes de Óxido Nítrico/farmacología , Nitroprusiato/farmacología , Células PC12 , Fosforilación/efectos de los fármacos , Fosforilación/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas , Proteína p53 Supresora de Tumor/genética
13.
Biochem J ; 451(2): 301-11, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23390933

RESUMEN

Hepcidin is the major regulatory peptide hormone of iron metabolism, encoded by the HAMP (hepcidin antimicrobial peptide) gene. Hepcidin is expressed mainly in hepatocytes, but is also found in the blood in both a mature and prohormone form. Although, the function of mature hepcidin and the regulation of the HAMP gene have been extensively studied, the intracellular localization and the fate of prohepcidin remains controversial. In the present study, we propose a novel role for prohepcidin in the regulation of its own transcription. Using indirect immunofluorescence and mCherry tagging, a portion of prohepcidin was detected in the nucleus of hepatocytes. Prohepcidin was found to specifically bind to the STAT3 (signal transducer and activator of transcription 3) site in the promoter of HAMP. Overexpression of prohepcidin in WRL68 cells decreased HAMP promoter activity, whereas decreasing the amount of prohepcidin caused increased promoter activity measured by a luciferase reporter-gene assay. Moreover, overexpression of the known prohepcidin-binding partner, α-1 antitrypsin caused increased HAMP promoter activity, suggesting that only the non-α-1 antitrypsin-bound prohepcidin affects the expression of its own gene. The results of the present study indicate that prohepcidin can bind to and transcriptionally regulate the expression of HAMP, suggesting a novel autoregulatory pathway of hepcidin gene expression in hepatocytes.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/metabolismo , Regulación de la Expresión Génica , Precursores de Proteínas/metabolismo , Sitios de Unión , Línea Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Regulación hacia Abajo , Hepatocitos/citología , Hepatocitos/metabolismo , Hepcidinas , Humanos , Regiones Promotoras Genéticas , Precursores de Proteínas/genética , Factor de Transcripción STAT3/metabolismo , alfa 1-Antitripsina/metabolismo
14.
Front Cell Dev Biol ; 12: 1334130, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38481530

RESUMEN

Transient Receptor Potential Vanilloid 1 (TRPV1) and Ankyrin 1 (TRPA1) are nonselective cation channels expressed in primary sensory neurons and several other non-neuronal structures such as immune cells, keratinocytes, and vascular smooth muscle cells. They play important roles in nociception, pain processing and their chanellopathies are associated with the development of several pathological conditions. They are located in cholesterol- and sphingolipid-rich membrane lipid raft regions serving as platforms to modulate their activations. We demonstrated earlier that disruption of these lipid rafts leads to decreased TRP channel activation and exerts analgesic effects. Cyclodextrins are macrocyclic molecules able to form host-guest complexes with cholesterol and deplete it from the membrane lipid rafts. The aim of this study was to investigate 8 structurally different (methylated and non-methylated) CD derivatives on cell viability, mitochondrial membrane potential, membrane composition and activation abilities of the TRPV1 and TRPA1 channels. We showed that non-methylated derivatives have preferable safety profiles compared to methylated ones. Furthermore, methylated derivatives reduced mitochondrial membrane potential. However, all investigated derivatives influence the ordered cell membrane structure depleting membrane cholesterol and inhibit the TRPV1 agonist capsaicin- and the TRPA1 agonist allyl isothiocyanate-induced Ca2+-influx. This mechanism of action might provide novel perspectives for the development of peripherally acting analgesics via indirectly decreasing the generation and transmission of nociceptive signals.

15.
FEBS Open Bio ; 13(5): 818-832, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36971048

RESUMEN

Corticotropin-releasing factor (CRF) stimulates adrenocorticotropic hormone (ACTH) secretion from the pituitary gland and is an essential regulator of the hypothalamic-pituitary-adrenocortical axis. Isoforms of CRF receptor are known to mediate the effects of urocortin stress ligands on the regulation of stress responses, anxiety, and feeding behavior; however, urocortin stress ligands also influence cell proliferation. In view of the tumor-promoting capacity of prolonged stress, here we investigated (a) the effect of urocortin on cell proliferative signaling via extracellular signal-regulated kinase 1/2, (b) the expression and cellular distribution of the specific CRF receptor isoforms, and (c) the intracellular localization of phosphorylated ERK1/2 in HeLa cells. Stimulation of cell proliferation was observed in the presence of 10 nm urocortin. Our data also suggest that MAP kinase MEK, the transcription factors E2F-1 and p53, and PKB/Akt are involved in this process. These findings may have therapeutic relevance for the targeted treatment of various malignancies.


Asunto(s)
Receptores de Hormona Liberadora de Corticotropina , Urocortinas , Humanos , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Urocortinas/farmacología , Urocortinas/metabolismo , Sistema de Señalización de MAP Quinasas , Células HeLa , Ligandos , Hormona Liberadora de Corticotropina/metabolismo , Hormona Liberadora de Corticotropina/farmacología
16.
Cell Tissue Res ; 348(1): 37-46, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22350850

RESUMEN

Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide with highly potent neurotrophic and neuroprotective effects. PACAP and its receptors occur in the retina and PACAP has been applied in animal models of metabolic retinal disorders to reduce structural and functional damage. Furthermore, PACAP has been implicated as a potential anti-diabetic peptide. Our aim has been to investigate, by using a complex morphological, immunochemical and molecular biological approach, whether PACAP attenuates diabetic retinopathy. Diabetes was induced in rats with a single streptozotocin injection. PACAP was injected intravitreally into one eye (100 pmol) three times during the last week of a 3-week survival period. Retinas were processed for the following procedures: routine histology, immunohistochemistry (single and double labeling, whole-mount), quantitative reverse transcription with the polymerase chain reaction and Western blotting. Cone photoreceptors and dopaminergic amacrine and ganglion cells degenerated in diabetic retinas and glial fibrillary acidic protein were upregulated in Müller glial cells. The number of cones, the length of their outer segments and the cell number in the ganglion cell layer were decreased. PACAP ameliorated these structural changes. Moreover, PACAP increased the levels of PAC1-receptor and tyrosine-hydroxylase as detected by molecular biological methods. Thus, PACAP has significant protective effects in the diabetic retina. PACAP treatment attenuates neuronal cell loss in diabetic retinopathy, the protective effects of PACAP probably being mediated through the activation of PAC1-receptor. These results suggest that PACAP has a therapeutic potential in diabetic retinopathy.


Asunto(s)
Retinopatía Diabética/tratamiento farmacológico , Sustancias Protectoras/uso terapéutico , Animales , Western Blotting , Retinopatía Diabética/patología , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Proteína Ácida Fibrilar de la Glía/metabolismo , Inmunohistoquímica , Masculino , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Neuroglía/patología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/uso terapéutico , Sustancias Protectoras/farmacología , Ratas , Ratas Wistar , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo , Retina/efectos de los fármacos , Retina/enzimología , Retina/patología , Células Fotorreceptoras Retinianas Conos/efectos de los fármacos , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Conos/patología , Tirosina 3-Monooxigenasa/metabolismo
17.
Mol Cell Endocrinol ; 547: 111610, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35219718

RESUMEN

Urocortins are members of the stress-related corticotropin-releasing factor family. Small amounts of them are present in the circulation and they are produced locally in various tissues of higher vertebrates. Aside from regulating circulation, or food uptake they also influence, via auto- and paracrine mechanisms, cell proliferation. In the present study we investigated in MCF7 human breast cancer cells the effect of urocortin onto mitogenic signaling via ERK1/2. Our results revealed that already 10 nM urocortin could stimulate the phosphorylation of these kinases and cell proliferation of MCF7 cells while ATP production was reduced when kept in the presence of the peptide up to two days. We examined the expression and contribution of the specific receptors of urocortin to the activation of ERK1/2 and to cell proliferation, the intracellular distribution of phosphorylated ERK1/2, and the involvement of additional proteins like PKA, PKB/Akt, MEK, p53, Rb and E2F-1 behind the observed phenomena.


Asunto(s)
Neoplasias de la Mama , Urocortinas , Adenosina Trifosfato/metabolismo , Proliferación Celular , Hormona Liberadora de Corticotropina/metabolismo , Femenino , Humanos , Sistema de Señalización de MAP Quinasas , Células MCF-7 , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Fosforilación , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Urocortinas/farmacología
18.
Clin Hemorheol Microcirc ; 81(1): 1-12, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34958009

RESUMEN

BACKGROUND: The cold ischemia -reperfusion injury may lead to microcirculatory disturbances, hepatocellular swelling, inflammation, and organ dysfunction. Nicorandil is an anti-ischemic, ATP-sensitive potassium (KATP) channel opener drug and has proved its effectiveness against hepatic Ischemia/Reperfusion (I/R) injury. OBJECTIVE: This study aimed to investigate the effect of Nicorandil on mitochondrial apoptosis, oxidative stress, inflammation, histopathological changes, and cold ischemic tolerance of the liver in an ex vivo experimental isolated-organ-perfusion model. METHODS: We used an ex vivo isolated rat liver perfusion system for this study. The grafts were retrieved from male Wistar rats (n = 5 in each), preserved in cold storage (CS) for 2 or 4 hours (group 1, 2), or perfused for 2 or 4 hours (group 3, 4) immediately after removal with Krebs Henseleit Buffer (KHB) solution or Nicorandil containing KHB solution under subnormothermic (22-25°C) conditions (group 5, 6). After 15 minutes incubation at room temperature, the livers were reperfused with acellular, oxygenated solution under normothermic condition for 60 minutes. RESULTS: In the Nicorandil perfused groups, significantly decreased liver enzymes, GLDH, TNF-alpha, and IL-1ß were measured from the perfusate. Antioxidant enzymactivity was higher in the perfused groups. Histopathological examination showed ameliorated tissue deterioration, preserved parenchymal structure, decreased apoptosis, and increased Bcl-2 activity in the Nicorandil perfused groups. CONCLUSIONS: Perfusion with Nicorandil containing KHB solution may increase cold ischemic tolerance of the liver via mitochondrial protection which can be a potential therapeutic target to improve graft survival during transplantation.


Asunto(s)
Preservación de Órganos , Daño por Reperfusión , Animales , Frío , Inflamación , Isquemia , Hígado , Masculino , Microcirculación , Modelos Teóricos , Nicorandil/farmacología , Perfusión , Ratas , Ratas Wistar , Daño por Reperfusión/tratamiento farmacológico
19.
Sci Rep ; 12(1): 5808, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35388084

RESUMEN

Rat pheochromocytoma (PC12) cells were treated with the proteasome inhibitor MG-132 and morphological changes were recorded. Initially, neuronal differentiation was induced but after 24 h signs of morphological deterioration became apparent. We performed nuclear staining, flow cytometry and WST-1 assay then analyzed signal transduction pathways involving Akt, p38 MAPK (Mitogen-Activated Protein Kinase), JNK (c-Jun N-terminal Kinase), c-Jun and caspase-3. Stress signaling via p38, JNK and c-Jun was active even after 24 h of MG-132 treatment, while the survival-mediating Akt phosphorylation declined and the executor of apoptosis (caspase-3) was activated by that time and apoptosis was also observable. We examined subcellular localization of stress signaling components, applied kinase inhibitors and dominant negative H-Ras mutant-expressing PC12 cells in order to decipher connections of stress-mediating pathways. Our results are suggestive of that treatment with the proteasome inhibitor MG-132 has a biphasic nature in PC12 cells. Initially, it induces neuronal differentiation but prolonged treatments lead to apoptosis.


Asunto(s)
Leupeptinas , Inhibidores de Proteasoma , Neoplasias de las Glándulas Suprarrenales , Animales , Apoptosis/fisiología , Caspasa 3 , Activación Enzimática , Proteínas Quinasas JNK Activadas por Mitógenos , Células PC12 , Feocromocitoma , Inhibidores de Proteasoma/farmacología , Proteínas Proto-Oncogénicas c-akt , Ratas , Proteínas Quinasas p38 Activadas por Mitógenos
20.
Brain ; 133(Pt 3): 822-34, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20157013

RESUMEN

Oligodendrocyte loss and demyelination are major pathological hallmarks of multiple sclerosis. In pattern III lesions, inflammation is minor in the early stages, and oligodendrocyte apoptosis prevails, which appears to be mediated at least in part through mitochondrial injury. Here, we demonstrate poly(ADP-ribose) polymerase activation and apoptosis inducing factor nuclear translocation within apoptotic oligodendrocytes in such multiple sclerosis lesions. The same morphological and molecular pathology was observed in an experimental model of primary demyelination, induced by the mitochondrial toxin cuprizone. Inhibition of poly(ADP-ribose) polymerase in this model attenuated oligodendrocyte depletion and decreased demyelination. Poly(ADP-ribose) polymerase inhibition suppressed c-Jun N-terminal kinase and p38 mitogen-activated protein kinase phosphorylation, increased the activation of the cytoprotective phosphatidylinositol-3 kinase-Akt pathway and prevented caspase-independent apoptosis inducing factor-mediated apoptosis. Our data indicate that poly(ADP-ribose) polymerase activation plays a crucial role in the pathogenesis of pattern III multiple sclerosis lesions. Since poly(ADP-ribose) polymerase inhibition was also effective in the inflammatory model of multiple sclerosis, it may target all subtypes of multiple sclerosis, either by preventing oligodendrocyte death or attenuating inflammation.


Asunto(s)
Apoptosis/fisiología , Encéfalo/enzimología , Esclerosis Múltiple/enzimología , Oligodendroglía/enzimología , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Poli(ADP-Ribosa) Polimerasas/metabolismo , Transporte Activo de Núcleo Celular , Animales , Factor Inductor de la Apoptosis/metabolismo , Encéfalo/fisiopatología , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Núcleo Celular/enzimología , Núcleo Celular/fisiología , Cuprizona , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/enzimología , Enfermedades Desmielinizantes/fisiopatología , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/inducido químicamente , Esclerosis Múltiple/fisiopatología , Vaina de Mielina/enzimología , Vaina de Mielina/fisiología , Oligodendroglía/fisiología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA