Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 120(11): 116101, 2018 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-29601750

RESUMEN

It seems natural to assume that defects at mineral surfaces critically influence interfacial processes such as the dissolution and growth of minerals in water. The experimental verification of this claim, however, is challenging and requires real-space methods with utmost spatial resolution, such as atomic force microscopy (AFM). While defects at mineral-water interfaces have been resolved in 2D AFM images before, the perturbation of the surrounding hydration structure has not yet been analyzed experimentally. In this Letter, we demonstrate that point defects on the most stable and naturally abundant calcite (10.4) surface can be resolved using high-resolution 3D AFM-even within the fifth hydration layer. Our analysis of the hydration structure surrounding the point defect shows a perturbation of the hydration with a lateral extent of approximately one unit cell. These experimental results are corroborated by molecular dynamics simulations.

2.
Langmuir ; 33(1): 125-129, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-27960056

RESUMEN

Solid-liquid interfaces are decisive for a wide range of natural and technological processes, including fields as diverse as geochemistry and environmental science as well as catalysis and corrosion protection. Dynamic atomic force microscopy nowadays provides unparalleled structural insights into solid-liquid interfaces, including the solvation structure above the surface. In contrast, chemical identification of individual interfacial atoms still remains a considerable challenge. So far, an identification of chemically alike atoms in a surface alloy has only been demonstrated under well-controlled ultrahigh vacuum conditions. In liquids, the recent advent of three-dimensional force mapping has opened the potential to discriminate between anionic and cationic surface species. However, a full chemical identification will also include the far more challenging situation of alike interfacial atoms (i.e., with the same net charge). Here we demonstrate the chemical identification capabilities of dynamic atomic force microscopy at solid-liquid interfaces by identifying Ca and Mg cations at the dolomite-water interface. Analyzing site-specific vertical positions of hydration layers and comparing them with molecular dynamics simulations unambiguously unravels the minute but decisive difference in ion hydration and provides a clear means for telling calcium and magnesium ions apart. Our work, thus, demonstrates the chemical identification capabilities of dynamic AFM at the solid-liquid interface.

3.
J Phys Chem Lett ; 12(31): 7605-7611, 2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34350760

RESUMEN

Mineral-water interfaces play an important role in many natural as well as technological fields. Fundamental properties of these interfaces are governed by the presence of the interfacial water and its specific structure at the surface. Calcite is particularly interesting as a dominant rock-forming mineral in the earth's crust. Here, we combine atomic force microscopy, sum-frequency generation spectroscopy, and molecular dynamics simulations to determine the position and orientation of the water molecules in the hydration layers of the calcite surface with high resolution. While atomic force microscopy provides detailed information about the position of the water molecules at the interface, sum-frequency generation spectroscopy can deduce the orientation of the water molecules. Comparison of the calcite-water interface to the interfaces of magnesite-water, magnesite-ethanol, and calcite-ethanol reveals a comprehensive picture with opposite water orientations in the first and second layer of the interface, which is corroborated by the molecular dynamics simulations.

4.
Beilstein J Nanotechnol ; 11: 891-898, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32566439

RESUMEN

Calcite and magnesite are important mineral constituents of the earth's crust. In aqueous environments, these carbonates typically expose their most stable cleavage plane, the (10.4) surface. It is known that these surfaces interact with a large variety of organic molecules, which can result in surface restructuring. This process is decisive for the formation of biominerals. With the development of 3D atomic force microscopy (AFM) it is now possible to image solid-liquid interfaces with unprecedented molecular resolution. However, the majority of 3D AFM studies have been focused on the arrangement of water at carbonate surfaces. Here, we present an analysis of the assembly of ethanol - an organic molecule with a single hydroxy group - at the calcite and magnesite (10.4) surfaces by using high-resolution 3D AFM and molecular dynamics (MD) simulations. Within a single AFM data set we are able to resolve both the first laterally ordered solvation layer of ethanol on the calcite surface as well as the following solvation layers that show no lateral order. Our experimental results are in excellent agreement with MD simulations. The qualitative difference in the lateral order can be understood by the differing chemical environment: While the first layer adopts specific binding positions on the ionic carbonate surface, the second layer resides on top of the organic ethyl layer. A comparison of calcite and magnesite reveals a qualitatively similar ethanol arrangement on both carbonates, indicating the general nature of this finding.

5.
J Phys Condens Matter ; 29(27): 274001, 2017 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-28585517

RESUMEN

A variety of atomic force microscopy (AFM) modes is employed in the field of surface science. The most prominent AFM modes include the amplitude modulation (AM) and the frequency modulation (FM) mode. Over the years, different ways for analyzing data acquired with different AFM modes have been developed, where each analysis is usually based on mode-specific assumptions and approximations. Checking the validity of the seemingly different approximations employed in the various analysis methods can be a tedious task. Moreover, a straightforward comparison of data analyzed with different methods can, therefore, be challenging. Here, we combine the existing evaluation methods which have been separately developed for the different AFM modes and present a unifying set of three equations. These three AFM equations allow for a straightforward analysis of AFM data within the harmonic approximation, regardless of the AFM mode. The three AFM equations provide the three and only pieces of information about the tip-sample force available within the harmonic approximation. We demonstrate the generality of our approach by quantitatively analyzing three-dimensional AFM data obtained in both the AM and FM mode.

6.
Rev Sci Instrum ; 87(6): 063704, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27370456

RESUMEN

We present the implementation of a three-dimensional mapping routine for probing solid-liquid interfaces using frequency modulation atomic force microscopy. Our implementation enables fast and flexible data acquisition of up to 20 channels simultaneously. The acquired data can be directly synchronized with commercial atomic force microscope controllers, making our routine easily extendable for related techniques that require additional data channels, e.g., Kelvin probe force microscopy. Moreover, the closest approach of the tip to the sample is limited by a user-defined threshold, providing the possibility to prevent potential damage to the tip. The performance of our setup is demonstrated by visualizing the hydration structure above the calcite (10.4) surface in water.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA