Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Br J Cancer ; 127(2): 223-236, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35422078

RESUMEN

INTRODUCTION: Splice modulators have been assessed clinically in treating haematologic malignancies exhibiting splice factor mutations and acute myeloid leukaemia. However, the mechanisms by which such modulators repress leukaemia remain to be elucidated. OBJECTIVES: The primary goal of this assessment was to assess the molecular mechanism by which the natural splice modulator GEX1A kills leukaemic cells in vitro and within in vivo mouse models. METHODS: Using human leukaemic cell lines, we assessed the overall sensitivity these cells have to GEX1A via EC50 analysis. We subsequently analysed its effects using in vivo xenograft mouse models and examined whether cell sensitivities were correlated to genetic characteristics or protein expression levels. We also utilised RT-PCR and RNAseq analyses to determine splice change and RNA expression level differences between sensitive and resistant leukaemic cell lines. RESULTS: We found that, in vitro, GEX1A induced an MCL-1 isoform shift to pro-apoptotic MCL-1S in all leukaemic cell types, though sensitivity to GEX1A-induced apoptosis was negatively associated with BCL-xL expression. In BCL-2-expressing leukaemic cells, GEX1A induced BCL-2-dependent apoptosis by converting pro-survival BCL-2 into a cell killer. Thus, GEX1A + selective BCL-xL inhibition induced synergism in killing leukaemic cells, while GEX1A + BCL-2 inhibition showed antagonism in BCL-2-expressing leukaemic cells. In addition, GEX1A sensitised FLT3-ITD+ leukaemic cells to apoptosis by inducing aberrant splicing and repressing the expression of FLT3-ITD. Consistently, in in vivo xenografts, GEX1A killed the bulk of leukaemic cells via apoptosis when combined with BCL-xL inhibition. Furthermore, GEX1A repressed leukaemia development by targeting leukaemia stem cells through inhibiting FASTK mitochondrial isoform expression across sensitive and non-sensitive leukaemia types. CONCLUSION: Our study suggests that GEX1A is a potent anti-leukaemic agent in combination with BCL-xL inhibitors, which targets leukaemic blasts and leukaemia stem cells through distinct mechanisms.


Asunto(s)
Alcoholes Grasos/farmacología , Leucemia Mieloide Aguda , Proteínas Proto-Oncogénicas c-bcl-2 , Piranos/farmacología , Animales , Apoptosis , Línea Celular Tumoral , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Ratones , Mutación , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteína bcl-X/genética
2.
J Exp Clin Cancer Res ; 41(1): 135, 2022 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-35395857

RESUMEN

The TANK-binding kinase 1 (TBK1) is a serine/threonine kinase belonging to the non-canonical inhibitor of nuclear factor-κB (IκB) kinase (IKK) family. TBK1 can be activated by pathogen-associated molecular patterns (PAMPs), inflammatory cytokines, and oncogenic kinases, including activated K-RAS/N-RAS mutants. TBK1 primarily mediates IRF3/7 activation and NF-κB signaling to regulate inflammatory cytokine production and the activation of innate immunity. TBK1 is also involved in the regulation of several other cellular activities, including autophagy, mitochondrial metabolism, and cellular proliferation. Although TBK1 mutations have not been reported in human cancers, aberrant TBK1 activation has been implicated in the oncogenesis of several types of cancer, including leukemia and solid tumors with KRAS-activating mutations. As such, TBK1 has been proposed to be a feasible target for pharmacological treatment of these types of cancer. Studies suggest that TBK1 inhibition suppresses cancer development not only by directly suppressing the proliferation and survival of cancer cells but also by activating antitumor T-cell immunity. Several small molecule inhibitors of TBK1 have been identified and interrogated. However, to this point, only momelotinib (MMB)/CYT387 has been evaluated as a cancer therapy in clinical trials, while amlexanox (AMX) has been evaluated clinically for treatment of type II diabetes, nonalcoholic fatty liver disease, and obesity. In this review, we summarize advances in research into TBK1 signaling pathways and regulation, as well as recent studies on TBK1 in cancer pathogenesis. We also discuss the potential molecular mechanisms of targeting TBK1 for cancer treatment. We hope that our effort can help to stimulate the development of novel strategies for targeting TBK1 signaling in future approaches to cancer therapy.


Asunto(s)
Inmunidad Innata , Neoplasias , Proteínas Serina-Treonina Quinasas , Humanos , FN-kappa B/metabolismo , Neoplasias/genética , Neoplasias/inmunología , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA