Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 54(2): 367-386.e8, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33567262

RESUMEN

Understanding the contribution of the host's genetic background to cancer immunity may lead to improved stratification for immunotherapy and to the identification of novel therapeutic targets. We investigated the effect of common and rare germline variants on 139 well-defined immune traits in ∼9000 cancer patients enrolled in TCGA. High heritability was observed for estimates of NK cell and T cell subset infiltration and for interferon signaling. Common variants of IFIH1, TMEM173 (STING1), and TMEM108 were associated with differential interferon signaling and variants mapping to RBL1 correlated with T cell subset abundance. Pathogenic or likely pathogenic variants in BRCA1 and in genes involved in telomere stabilization and Wnt-ß-catenin also acted as immune modulators. Our findings provide evidence for the impact of germline genetics on the composition and functional orientation of the tumor immune microenvironment. The curated datasets, variants, and genes identified provide a resource toward further understanding of tumor-immune interactions.


Asunto(s)
Mutación de Línea Germinal/genética , Inmunoterapia/métodos , Células Asesinas Naturales/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Neoplasias/inmunología , Linfocitos T/inmunología , Bases de Datos Genéticas , Femenino , Regulación Neoplásica de la Expresión Génica , Genes BRCA1 , Estudio de Asociación del Genoma Completo , Humanos , Interferones/metabolismo , Masculino , Persona de Mediana Edad , Neoplasias/genética , Carácter Cuantitativo Heredable , Proteína p107 Similar a la del Retinoblastoma/genética , Transducción de Señal/genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
2.
Genet Epidemiol ; 46(7): 347-371, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35842778

RESUMEN

The inclusion of ancestrally diverse participants in genetic studies can lead to new discoveries and is important to ensure equitable health care benefit from research advances. Here, members of the Ethical, Legal, Social, Implications (ELSI) committee of the International Genetic Epidemiology Society (IGES) offer perspectives on methods and analysis tools for the conduct of inclusive genetic epidemiology research, with a focus on admixed and ancestrally diverse populations in support of reproducible research practices. We emphasize the importance of distinguishing socially defined population categorizations from genetic ancestry in the design, analysis, reporting, and interpretation of genetic epidemiology research findings. Finally, we discuss the current state of genomic resources used in genetic association studies, functional interpretation, and clinical and public health translation of genomic findings with respect to diverse populations.


Asunto(s)
Genética de Población , Genómica , Estudios Epidemiológicos , Estudios de Asociación Genética , Humanos , Epidemiología Molecular
3.
Brief Bioinform ; 22(6)2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33979427

RESUMEN

A cancer immune phenotype characterized by an active T-helper 1 (Th1)/cytotoxic response is associated with responsiveness to immunotherapy and favorable prognosis across different tumors. However, in some cancers, such an intratumoral immune activation does not confer protection from progression or relapse. Defining mechanisms associated with immune evasion is imperative to refine stratification algorithms, to guide treatment decisions and to identify candidates for immune-targeted therapy. Molecular alterations governing mechanisms for immune exclusion are still largely unknown. The availability of large genomic datasets offers an opportunity to ascertain key determinants of differential intratumoral immune response. We follow a network-based protocol to identify transcription regulators (TRs) associated with poor immunologic antitumor activity. We use a consensus of four different pipelines consisting of two state-of-the-art gene regulatory network inference techniques, regularized gradient boosting machines and ARACNE to determine TR regulons, and three separate enrichment techniques, including fast gene set enrichment analysis, gene set variation analysis and virtual inference of protein activity by enriched regulon analysis to identify the most important TRs affecting immunologic antitumor activity. These TRs, referred to as master regulators (MRs), are unique to immune-silent and immune-active tumors, respectively. We validated the MRs coherently associated with the immune-silent phenotype across cancers in The Cancer Genome Atlas and a series of additional datasets in the Prediction of Clinical Outcomes from Genomic Profiles repository. A downstream analysis of MRs specific to the immune-silent phenotype resulted in the identification of several enriched candidate pathways, including NOTCH1, TGF-$\beta $, Interleukin-1 and TNF-$\alpha $ signaling pathways. TGFB1I1 emerged as one of the main negative immune modulators preventing the favorable effects of a Th1/cytotoxic response.


Asunto(s)
Biomarcadores de Tumor , Susceptibilidad a Enfermedades , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Neoplasias/etiología , Neoplasias/metabolismo , Fenotipo , Biología Computacional/métodos , Bases de Datos Genéticas , Susceptibilidad a Enfermedades/inmunología , Perfilación de la Expresión Génica/métodos , Humanos , Inmunofenotipificación , Reproducibilidad de los Resultados , Transducción de Señal , Transcriptoma
4.
Lancet Oncol ; 23(3): 341-352, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35150601

RESUMEN

BACKGROUND: Disparities in the genetic risk of cancer among various ancestry groups and populations remain poorly defined. This challenge is even more acute for Middle Eastern populations, where the paucity of genomic data could affect the clinical potential of cancer genetic risk profiling. We used data from the phase 1 cohort of the Qatar Genome Programme to investigate genetic variation in cancer-susceptibility genes in the Qatari population. METHODS: The Qatar Genome Programme generated high-coverage genome sequencing on DNA samples collected from 6142 native Qataris, stratified into six distinct ancestry groups: general Arab, Persian, Arabian Peninsula, Admixture Arab, African, and South Asian. In this population-based, cohort study, we evaluated the performance of polygenic risk scores for the most common cancers in Qatar (breast, prostate, and colorectal cancers). Polygenic risk scores were trained in The Cancer Genome Atlas (TCGA) dataset, and their distributions were subsequently applied to the six different genetic ancestry groups of the Qatari population. Rare deleterious variants within 1218 cancer susceptibility genes were analysed, and their clinical pathogenicity was assessed by ClinVar and the CharGer computational tools. FINDINGS: The cohort included in this study was recruited by the Qatar Biobank between Dec 11, 2012, and June 9, 2016. The initial dataset comprised 6218 cohort participants, and whole genome sequencing quality control filtering led to a final dataset of 6142 samples. Polygenic risk score analyses of the most common cancers in Qatar showed significant differences between the six ancestry groups (p<0·0001). Qataris with Arabian Peninsula ancestry showed the lowest polygenic risk score mean for colorectal cancer (-0·41), and those of African ancestry showed the highest average for prostate cancer (0·85). Cancer-gene rare variant analysis identified 76 Qataris (1·2% of 6142 individuals in the Qatar Genome Programme cohort) carrying ClinVar pathogenic or likely pathogenic variants in clinically actionable cancer genes. Variant analysis using CharGer identified 195 individuals carriers (3·17% of the cohort). Breast cancer pathogenic variants were over-represented in Qataris of Persian origin (22 [56·4%] of 39 BRCA1/BRCA2 variant carriers) and completely absent in those of Arabian Peninsula origin. INTERPRETATION: We observed a high degree of heterogeneity for cancer predisposition genes and polygenic risk scores across ancestries in this population from Qatar. Stratification systems could be considered for the implementation of national cancer preventive medicine programmes. FUNDING: Qatar Foundation.


Asunto(s)
Predisposición Genética a la Enfermedad , Neoplasias , Estudios de Cohortes , Humanos , Masculino , Neoplasias/epidemiología , Neoplasias/genética , Oncogenes , Qatar/epidemiología
5.
Genome Res ; 29(1): 125-134, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30514702

RESUMEN

Genotype imputation is widely used in genome-wide association studies to boost variant density, allowing increased power in association testing. Many studies currently include pedigree data due to increasing interest in rare variants coupled with the availability of appropriate analysis tools. The performance of population-based (subjects are unrelated) imputation methods is well established. However, the performance of family- and population-based imputation methods on family data has been subject to much less scrutiny. Here, we extensively compare several family- and population-based imputation methods on family data of large pedigrees with both European and African ancestry. Our comparison includes many widely used family- and population-based tools and another method, Ped_Pop, which combines family- and population-based imputation results. We also compare four subject selection strategies for full sequencing to serve as the reference panel for imputation: GIGI-Pick, ExomePicks, PRIMUS, and random selection. Moreover, we compare two imputation accuracy metrics: the Imputation Quality Score and Pearson's correlation R 2 for predicting power of association analysis using imputation results. Our results show that (1) GIGI outperforms Merlin; (2) family-based imputation outperforms population-based imputation for rare variants but not for common ones; (3) combining family- and population-based imputation outperforms all imputation approaches for all minor allele frequencies; (4) GIGI-Pick gives the best selection strategy based on the R 2 criterion; and (5) R 2 is the best measure of imputation accuracy. Our study is the first to extensively evaluate the imputation performance of many available family- and population-based tools on the same family data and provides guidelines for future studies.


Asunto(s)
Población Negra/genética , Familia , Genoma Humano , Población Blanca/genética , Femenino , Humanos , Masculino
6.
Sensors (Basel) ; 22(5)2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35271099

RESUMEN

The Internet of Things (IoT) empowers the development of heterogeneous systems for various application domains using embedded devices and diverse data transmission protocols. Collaborative integration of these systems in the industrial domain leads to incompatibility and interoperability at different automation levels, requiring unified coordination to exchange information efficiently. The hardware specifications of these devices are resource-constrained, limiting their performance in resource allocation, data management, and remote process supervision. Hence, unlocking network capabilities with other domains such as cloud and web services is required. This study proposed a platform-independent middleware module incorporating the Open Platform Communication Unified Architecture (OPC UA) and Representational State Transfer (REST) paradigms. The object-oriented structure of this middleware allows information contextualization to address interoperability issues and offers aggregated data integration with other domains. RESTful web and cloud platforms were implemented to collect this middleware data, provide remote application support, and enable aggregated resource allocation in a database server. Several performance assessments were conducted on the developed system deployed in Raspberry Pi and Intel NUC PC, which showed acceptable platform resource utilization regarding CPU, bandwidth, and power consumption, with low service, update, and response time requirements. This integrated approach demonstrates an excellent cost-effective prospect for interoperable Machine-to-Machine (M2M) communication, enables remote process supervision, and offers aggregated bulk data management with wider domains.


Asunto(s)
Nube Computacional , Internet de las Cosas , Comunicación
7.
Sensors (Basel) ; 22(16)2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36015850

RESUMEN

Buses and heavy vehicles have more blind spots compared to cars and other road vehicles due to their large sizes. Therefore, accidents caused by these heavy vehicles are more fatal and result in severe injuries to other road users. These possible blind-spot collisions can be identified early using vision-based object detection approaches. Yet, the existing state-of-the-art vision-based object detection models rely heavily on a single feature descriptor for making decisions. In this research, the design of two convolutional neural networks (CNNs) based on high-level feature descriptors and their integration with faster R-CNN is proposed to detect blind-spot collisions for heavy vehicles. Moreover, a fusion approach is proposed to integrate two pre-trained networks (i.e., Resnet 50 and Resnet 101) for extracting high level features for blind-spot vehicle detection. The fusion of features significantly improves the performance of faster R-CNN and outperformed the existing state-of-the-art methods. Both approaches are validated on a self-recorded blind-spot vehicle detection dataset for buses and an online LISA dataset for vehicle detection. For both proposed approaches, a false detection rate (FDR) of 3.05% and 3.49% are obtained for the self recorded dataset, making these approaches suitable for real time applications.


Asunto(s)
Vehículos a Motor , Redes Neurales de la Computación , Automóviles
8.
Sensors (Basel) ; 22(17)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36081012

RESUMEN

Specular highlights detection and removal in images is a fundamental yet non-trivial problem of interest. Most modern techniques proposed are inadequate at dealing with real-world images taken under uncontrolled conditions with the presence of complex textures, multiple objects, and bright colours, resulting in reduced accuracy and false positives. To detect specular pixels in a wide variety of real-world images independent of the number, colour, or type of illuminating source, we propose an efficient Specular Segmentation (SpecSeg) network based on the U-net architecture that is expeditious to train on nominal-sized datasets. The proposed network can detect pixels strongly affected by specular highlights with a high degree of precision, as shown by comparison with the state-of-the-art methods. The technique proposed is trained on publicly available datasets and tested using a large selection of real-world images with highly encouraging results.

9.
Brief Bioinform ; 20(1): 245-253, 2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-28968627

RESUMEN

Genome-wide association studies have been an important approach used to localize trait loci, with primary focus on common variants. The multiple rare variant-common disease hypothesis may explain the missing heritability remaining after accounting for identified common variants. Advances of sequencing technologies with their decreasing costs, coupled with methodological advances in the context of association studies in large samples, now make the study of rare variants at a genome-wide scale feasible. The resurgence of family-based association designs because of their advantage in studying rare variants has also stimulated more methods development, mainly based on linear mixed models (LMMs). Other tests such as score tests can have advantages over the LMMs, but to date have mainly been proposed for single-marker association tests. In this article, we extend several score tests (χcorrected2, WQLS, and SKAT) to the multiple variant association framework. We evaluate and compare their statistical performances relative with the LMM. Moreover, we show that three tests can be cast as the difference between marker allele frequencies (AFs) estimated in each of the group of affected and unaffected subjects. We show that these tests are flexible, as they can be based on related, unrelated or both related and unrelated subjects. They also make feasible an increasingly common design that only sequences a subset of affected subjects (related or unrelated) and uses for comparison publicly available AFs estimated in a group of healthy subjects. Finally, we show the great impact of linkage disequilibrium on the performance of all these tests.


Asunto(s)
Estudio de Asociación del Genoma Completo/estadística & datos numéricos , Estudios de Casos y Controles , Biología Computacional/métodos , Simulación por Computador , Estudios de Factibilidad , Femenino , Frecuencia de los Genes , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento/estadística & datos numéricos , Humanos , Modelos Lineales , Desequilibrio de Ligamiento , Masculino , Modelos Genéticos , Linaje , Sitios de Carácter Cuantitativo , Análisis de Secuencia de ADN/estadística & datos numéricos
10.
Sensors (Basel) ; 21(15)2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34372278

RESUMEN

This paper reviews energy storage systems, in general, and for specific applications in low-cost micro-energy harvesting (MEH) systems, low-cost microelectronic devices, and wireless sensor networks (WSNs). With the development of electronic gadgets, low-cost microelectronic devices and WSNs, the need for an efficient, light and reliable energy storage device is increased. The current energy storage systems (ESS) have the disadvantages of self-discharging, energy density, life cycles, and cost. The ambient energy resources are the best option as an energy source, but the main challenge in harvesting energy from ambient sources is the instability of the source of energy. Due to the explosion of lithium batteries in many cases, and the pros associated with them, the design of an efficient device, which is more reliable and efficient than conventional batteries, is important. This review paper focused on the issues of the reliability and performance of electrical ESS, and, especially, discussed the technical challenges and suggested solutions for ESS (batteries, supercapacitors, and for a hybrid combination of supercapacitors and batteries) in detail. Nowadays, the main market of batteries is WSNs, but in the last decade, the world's attention has turned toward supercapacitors as a good alternative of batteries. The main advantages of supercapacitors are their light weight, volume, greater life cycle, turbo charging/discharging, high energy density and power density, low cost, easy maintenance, and no pollution. This study reviews supercapacitors as a better alternative of batteries in low-cost electronic devices, WSNs, and MEH systems.

11.
Bioinformatics ; 35(15): 2683-2685, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30590437

RESUMEN

MOTIVATION: It is important to characterize individual relatedness in terms of familial relationships and underlying population structure in genome-wide association studies for correct downstream analysis. The characterization of individual relatedness becomes vital if the cohort is to be used as reference panel in other studies for association tests and for identifying ethnic diversities. In this paper, we propose a kinship visualization tool to detect cryptic relatedness between subjects. We utilize multi-dimensional scaling, bar charts, heat maps and node-link visualizations to enable analysis of relatedness information. AVAILABILITY AND IMPLEMENTATION: Available online as well as can be downloaded at http://shiny-vis.qcri.org/public/kinvis/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Estudio de Asociación del Genoma Completo , Programas Informáticos
12.
Genomics ; 111(4): 808-818, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-29857119

RESUMEN

The Alzheimer's Disease Sequencing Project (ADSP) performed whole genome sequencing (WGS) of 584 subjects from 111 multiplex families at three sequencing centers. Genotype calling of single nucleotide variants (SNVs) and insertion-deletion variants (indels) was performed centrally using GATK-HaplotypeCaller and Atlas V2. The ADSP Quality Control (QC) Working Group applied QC protocols to project-level variant call format files (VCFs) from each pipeline, and developed and implemented a novel protocol, termed "consensus calling," to combine genotype calls from both pipelines into a single high-quality set. QC was applied to autosomal bi-allelic SNVs and indels, and included pipeline-recommended QC filters, variant-level QC, and sample-level QC. Low-quality variants or genotypes were excluded, and sample outliers were noted. Quality was assessed by examining Mendelian inconsistencies (MIs) among 67 parent-offspring pairs, and MIs were used to establish additional genotype-specific filters for GATK calls. After QC, 578 subjects remained. Pipeline-specific QC excluded ~12.0% of GATK and 14.5% of Atlas SNVs. Between pipelines, ~91% of SNV genotypes across all QCed variants were concordant; 4.23% and 4.56% of genotypes were exclusive to Atlas or GATK, respectively; the remaining ~0.01% of discordant genotypes were excluded. For indels, variant-level QC excluded ~36.8% of GATK and 35.3% of Atlas indels. Between pipelines, ~55.6% of indel genotypes were concordant; while 10.3% and 28.3% were exclusive to Atlas or GATK, respectively; and ~0.29% of discordant genotypes were. The final WGS consensus dataset contains 27,896,774 SNVs and 3,133,926 indels and is publicly available.


Asunto(s)
Enfermedad de Alzheimer/genética , Estudio de Asociación del Genoma Completo/normas , Técnicas de Genotipaje/normas , Control de Calidad , Secuenciación Completa del Genoma/normas , Algoritmos , Femenino , Estudio de Asociación del Genoma Completo/métodos , Genotipo , Técnicas de Genotipaje/métodos , Humanos , Masculino , Polimorfismo Genético , Secuenciación Completa del Genoma/métodos
13.
Sensors (Basel) ; 20(20)2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-33053886

RESUMEN

Oral mucosal lesions (OML) and oral potentially malignant disorders (OPMDs) have been identified as having the potential to transform into oral squamous cell carcinoma (OSCC). This research focuses on the human-in-the-loop-system named Healthcare Professionals in the Loop (HPIL) to support diagnosis through an advanced machine learning procedure. HPIL is a novel system approach based on the textural pattern of OML and OPMDs (anomalous regions) to differentiate them from standard regions of the oral cavity by using autofluorescence imaging. An innovative method based on pre-processing, e.g., the Deriche-Canny edge detector and circular Hough transform (CHT); a post-processing textural analysis approach using the gray-level co-occurrence matrix (GLCM); and a feature selection algorithm (linear discriminant analysis (LDA)), followed by k-nearest neighbor (KNN) to classify OPMDs and the standard region, is proposed in this paper. The accuracy, sensitivity, and specificity in differentiating between standard and anomalous regions of the oral cavity are 83%, 85%, and 84%, respectively. The performance evaluation was plotted through the receiver operating characteristics of periodontist diagnosis with the HPIL system and without the system. This method of classifying OML and OPMD areas may help the dental specialist to identify anomalous regions for performing their biopsies more efficiently to predict the histological diagnosis of epithelial dysplasia.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de la Boca , Imagen Óptica , Carcinoma de Células Escamosas/diagnóstico por imagen , Atención a la Salud , Humanos , Neoplasias de la Boca/diagnóstico por imagen , Estándares de Referencia
14.
Bioinformatics ; 34(9): 1591-1593, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29267877

RESUMEN

Summary: Genome-wide association studies have become common over the last ten years, with a shift towards targeting rare variants, especially in pedigree-data. Despite lower costs, sequencing for rare variants still remains expensive. To have a relatively large sample with acceptable cost, imputation approaches may be used, such as GIGI for pedigree data. GIGI is an imputation method that handles large pedigrees and is particularly good for rare variant imputation. GIGI requires a subset of individuals in a pedigree to be fully sequenced, while other individuals are sequenced only at relevant markers. The imputation will infer the missing genotypes at untyped markers. Running GIGI on large pedigrees for large numbers of markers can be very time consuming. We present GIGI-Quick as a method to efficiently split GIGI's input, run GIGI in parallel and efficiently merge the output to reduce the runtime with the number of cores. This allows obtaining imputation results faster, and therefore all subsequent association analyses. Availability and and implementation: GIGI-Quick is open source and publicly available via: https://cse-git.qcri.org/Imputation/GIGI-Quick. Contact: msaad@hbku.edu.qa. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Estudio de Asociación del Genoma Completo , Genotipo , Linaje , Programas Informáticos
15.
Hum Mol Genet ; 23(3): 831-41, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24057672

RESUMEN

Parkinson's disease (PD) has a number of known genetic risk factors. Clinical and epidemiological studies have suggested the existence of intermediate factors that may be associated with additional risk of PD. We construct genetic risk profiles for additional epidemiological and clinical factors using known genome-wide association studies (GWAS) loci related to these specific phenotypes to estimate genetic comorbidity in a systematic review. We identify genetic risk profiles based on GWAS variants associated with schizophrenia and Crohn's disease as significantly associated with risk of PD. Conditional analyses adjusting for SNPs near loci associated with PD and schizophrenia or PD and Crohn's disease suggest that spatially overlapping loci associated with schizophrenia and PD account for most of the shared comorbidity, while variation outside of known proximal loci shared by PD and Crohn's disease accounts for their shared genetic comorbidity. We examine brain methylation and expression signatures proximal to schizophrenia and Crohn's disease loci to infer functional changes in the brain associated with the variants contributing to genetic comorbidity. We compare our results with a systematic review of epidemiological literature, while the findings are dissimilar to a degree; marginal genetic associations corroborate the directionality of associations across genetic and epidemiological data. We show a strong genetically defined level of comorbidity between PD and Crohn's disease as well as between PD and schizophrenia, with likely functional consequences of associated variants occurring in brain.


Asunto(s)
Enfermedad de Crohn/epidemiología , Enfermedad de Parkinson/epidemiología , Enfermedad de Parkinson/genética , Polimorfismo de Nucleótido Simple , Esquizofrenia/epidemiología , Comorbilidad , Islas de CpG , Enfermedad de Crohn/genética , Metilación de ADN , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Factores de Riesgo , Esquizofrenia/genética
16.
Genet Epidemiol ; 38(7): 579-90, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25132070

RESUMEN

In the last two decades, complex traits have become the main focus of genetic studies. The hypothesis that both rare and common variants are associated with complex traits is increasingly being discussed. Family-based association studies using relatively large pedigrees are suitable for both rare and common variant identification. Because of the high cost of sequencing technologies, imputation methods are important for increasing the amount of information at low cost. A recent family-based imputation method, Genotype Imputation Given Inheritance (GIGI), is able to handle large pedigrees and accurately impute rare variants, but does less well for common variants where population-based methods perform better. Here, we propose a flexible approach to combine imputation data from both family- and population-based methods. We also extend the Sequence Kernel Association Test for Rare and Common variants (SKAT-RC), originally proposed for data from unrelated subjects, to family data in order to make use of such imputed data. We call this extension "famSKAT-RC." We compare the performance of famSKAT-RC and several other existing burden and kernel association tests. In simulated pedigree sequence data, our results show an increase of imputation accuracy from use of our combining approach. Also, they show an increase of power of the association tests with this approach over the use of either family- or population-based imputation methods alone, in the context of rare and common variants. Moreover, our results show better performance of famSKAT-RC compared to the other considered tests, in most scenarios investigated here.


Asunto(s)
Estudios de Asociación Genética , Polimorfismo de Nucleótido Simple , Simulación por Computador , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Desequilibrio de Ligamiento , Modelos Genéticos , Análisis Multivariante , Linaje , Fenotipo , Programas Informáticos
17.
Genet Epidemiol ; 38(1): 1-9, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24243664

RESUMEN

Recently, the "Common Disease-Multiple Rare Variants" hypothesis has received much attention, especially with current availability of next-generation sequencing. Family-based designs are well suited for discovery of rare variants, with large and carefully selected pedigrees enriching for multiple copies of such variants. However, sequencing a large number of samples is still prohibitive. Here, we evaluate a cost-effective strategy (pseudosequencing) to detect association with rare variants in large pedigrees. This strategy consists of sequencing a small subset of subjects, genotyping the remaining sampled subjects on a set of sparse markers, and imputing the untyped markers in the remaining subjects conditional on the sequenced subjects and pedigree information. We used a recent pedigree imputation method (GIGI), which is able to efficiently handle large pedigrees and accurately impute rare variants. We used burden and kernel association tests, famWS and famSKAT, which both account for family relationships and heterogeneity of allelic effect for famSKAT only. We simulated pedigree sequence data and compared the power of association tests for pseudosequence data, a subset of sequence data used for imputation, and all subjects sequenced. We also compared, within the pseudosequence data, the power of association test using best-guess genotypes and allelic dosages. Our results show that the pseudosequencing strategy considerably improves the power to detect association with rare variants. They also show that the use of allelic dosages results in much higher power than use of best-guess genotypes in these family-based data. Moreover, famSKAT shows greater power than famWS in most of scenarios we considered.


Asunto(s)
Estudios de Asociación Genética/métodos , Variación Genética/genética , Genotipo , Linaje , Análisis de Secuencia de ADN , Alelos , Estudio de Asociación del Genoma Completo , Haplotipos , Humanos , Desequilibrio de Ligamiento , Modelos Genéticos , Proyectos de Investigación , Análisis de Secuencia de ADN/economía , Programas Informáticos
18.
Hum Mol Genet ; 22(5): 1039-49, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23223016

RESUMEN

Parkinson's disease (PD) is the second most common neurodegenerative disease affecting 1-2% in people >60 and 3-4% in people >80. Genome-wide association (GWA) studies have now implicated significant evidence for association in at least 18 genomic regions. We have studied a large PD-meta analysis and identified a significant excess of SNPs (P < 1 × 10(-16)) that are associated with PD but fall short of the genome-wide significance threshold. This result was independent of variants at the 18 previously implicated regions and implies the presence of additional polygenic risk alleles. To understand how these loci increase risk of PD, we applied a pathway-based analysis, testing for biological functions that were significantly enriched for genes containing variants associated with PD. Analysing two independent GWA studies, we identified that both had a significant excess in the number of functional categories enriched for PD-associated genes (minimum P = 0.014 and P = 0.006, respectively). Moreover, 58 categories were significantly enriched for associated genes in both GWA studies (P < 0.001), implicating genes involved in the 'regulation of leucocyte/lymphocyte activity' and also 'cytokine-mediated signalling' as conferring an increased susceptibility to PD. These results were unaltered by the exclusion of all 178 genes that were present at the 18 genomic regions previously reported to be strongly associated with PD (including the HLA locus). Our findings, therefore, provide independent support to the strong association signal at the HLA locus and imply that the immune-related genetic susceptibility to PD is likely to be more widespread in the genome than previously appreciated.


Asunto(s)
Antígenos HLA/genética , Redes y Vías Metabólicas , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/inmunología , Alelos , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Redes y Vías Metabólicas/genética , Redes y Vías Metabólicas/inmunología , Enfermedad de Parkinson/metabolismo , Polimorfismo de Nucleótido Simple , Riesgo
19.
Hum Hered ; 78(1): 1-8, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24969160

RESUMEN

OBJECTIVES: A particular approach to the visualization of descent of founder DNA copies in a pedigree has been suggested, which helps to understand haplotype sharing patterns among subjects of interest. However, the approach does not provide the information in an ideal format to show haplotype sharing patterns. Therefore, we aimed to find an efficient way to visualize such sharing patterns and to demonstrate that our tool provides useful information for finding an informative subset of subjects for a sequence study. METHODS: The visualization package, SharedHap, computes and visualizes a novel metric, the SharedHap proportion, which quantifies haplotype sharing among a set of subjects of interest. We applied SharedHap to simulated and real pedigree datasets to illustrate the approach. RESULTS: SharedHap successfully represents haplotype sharing patterns that contribute to linkage signals in both simulated and real datasets. Using the visualizations we were also able to find ideal sets of subjects for sequencing studies. CONCLUSIONS: Our novel metric that can be computed using the SharedHap package provides useful information about haplotype sharing patterns among subjects of interest. The visualization of the SharedHap proportion provides useful information in pedigree studies, allowing for a better selection of candidate subjects for use in further sequencing studies.


Asunto(s)
Biología Computacional/métodos , Genética de Población/métodos , Haplotipos , Linaje , Simulación por Computador , Femenino , Efecto Fundador , Humanos , Masculino , Reproducibilidad de los Resultados , Programas Informáticos
20.
Hum Mol Genet ; 21(22): 4996-5009, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22892372

RESUMEN

Genome-wide association studies (GWASs) have been successful at identifying single-nucleotide polymorphisms (SNPs) highly associated with common traits; however, a great deal of the heritable variation associated with common traits remains unaccounted for within the genome. Genome-wide complex trait analysis (GCTA) is a statistical method that applies a linear mixed model to estimate phenotypic variance of complex traits explained by genome-wide SNPs, including those not associated with the trait in a GWAS. We applied GCTA to 8 cohorts containing 7096 case and 19 455 control individuals of European ancestry in order to examine the missing heritability present in Parkinson's disease (PD). We meta-analyzed our initial results to produce robust heritability estimates for PD types across cohorts. Our results identify 27% (95% CI 17-38, P = 8.08E - 08) phenotypic variance associated with all types of PD, 15% (95% CI -0.2 to 33, P = 0.09) phenotypic variance associated with early-onset PD and 31% (95% CI 17-44, P = 1.34E - 05) phenotypic variance associated with late-onset PD. This is a substantial increase from the genetic variance identified by top GWAS hits alone (between 3 and 5%) and indicates there are substantially more risk loci to be identified. Our results suggest that although GWASs are a useful tool in identifying the most common variants associated with complex disease, a great deal of common variants of small effect remain to be discovered.


Asunto(s)
Estudio de Asociación del Genoma Completo , Herencia Multifactorial , Enfermedad de Parkinson/genética , Carácter Cuantitativo Heredable , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Predisposición Genética a la Enfermedad , Variación Genética , Humanos , Masculino , Persona de Mediana Edad , Población Blanca/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA