Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Nature ; 612(7941): 691-695, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36265512

RESUMEN

Quantum mechanical tunnelling describes transmission of matter waves through a barrier with height larger than the energy of the wave1. Tunnelling becomes important when the de Broglie wavelength of the particle exceeds the barrier thickness; because wavelength increases with decreasing mass, lighter particles tunnel more efficiently than heavier ones. However, there exist examples in condensed-phase chemistry where increasing mass leads to increased tunnelling rates2. In contrast to the textbook approach, which considers transitions between continuum states, condensed-phase reactions involve transitions between bound states of reactants and products. Here this conceptual distinction is highlighted by experimental measurements of isotopologue-specific tunnelling rates for CO rotational isomerization at an NaCl surface3,4, showing nonmonotonic mass dependence. A quantum rate theory of isomerization is developed wherein transitions between sub-barrier reactant and product states occur through interaction with the environment. Tunnelling is fastest for specific pairs of states (gateways), the quantum mechanical details of which lead to enhanced cross-barrier coupling; the energies of these gateways arise nonsystematically, giving an erratic mass dependence. Gateways also accelerate ground-state isomerization, acting as leaky holes through the reaction barrier. This simple model provides a way to account for tunnelling in condensed-phase chemistry, and indicates that heavy-atom tunnelling may be more important than typically assumed.

2.
Chemphyschem ; 25(11): e202300882, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38517940

RESUMEN

In this work, the rational design of optoelectronic properties of two-dimensional materials based on hexagonal boron nitride (h-BN) by functionalization by methyl (CH3) groups is proposed. Using density functional theory, we examine the functionalization of single- or double-layer systems with either CH3 radicals alone or with both CH3 (cations) and chlorine (anions), i. e., under conditions of homolytic or heterolytic splitting of CH3Cl precursor molecules, respectively. Different degrees of methylation (coverages) are considered. The methylation of pure h-BN leads to a reduction of the band gap, while in h-BN/G heterostructures (with methylated graphene layer), methylation increases the band gap. As a consequence, h-BN/G heterostructures offer a high tunability of their optoelectronic properties. To guide possible experiments, vibrational properties and spectra of methylated h-BN and methylated h-BN/G are determined.

3.
Chemphyschem ; : e202400331, 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39073265

RESUMEN

Cations of diamondoids and derivatives thereof have recently become the subject of experimental, spectroscopic studies due to their potential role in astrochemistry. In particular, their electronic spectra and photoinduced dynamics trigger great interest. Here, we report on computational investigations of two nitrogen-containing derivatives of the adamantane cation (Ada+, C10H16+), the amantadine cation (Ama+, C10H15NH2+) and the 1-cyanoadamantane cation (Ada-CN+, C10H15CN+). Specifically, we study electronic (vibrationally resolved) spectra and nonadiabatic molecular dynamics (modeled using the surface hopping approach based on semiempirical electronic structure theory) of these radical cations. The internal conversion time constants as well as reactive relaxation outcomes (cage-opening and hydrogen loss) are compared for the two derivatives and also with the case of Ada+ [Roy et al., Theor. Chem. Acc.2023, 142, 71]. Remarkably, we find a longer ground-state recovery time for Ada-CN+ than for Ama+ (for the same excitation energy window), despite a smaller excitation energy for the former. Thus, a static energy gap law cannot be used to rationalize nonadiabatic dynamics and excited-state lifetimes in this case: Dynamics and details of the couplings between several states play a decisive role.

4.
Phys Chem Chem Phys ; 26(14): 11084-11093, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38530253

RESUMEN

Porous graphitic materials containing nitrogen are promising catalysts for photo(electro)chemical reactions, notably water splitting, but can also serve as "molecular sieves". Nitrogen increases the hydrophilicity of the graphite parent material, among other effects. A deeper understanding of how water interacts with C- and N-containing layered materials, if and which differences exist between materials with different N content and pore size, and what the role of water dynamics is - a prerequsite for catalysis and sieving - is largely absent, however. Vibrational spectroscopy can answer some of these questions. In this work, the vibrational dynamics and spectroscopy of deuterated water molecules (D2O) mimicking dense water layers at room temperature on the surfaces of two different C/N-based materials with different N content and pore size, namely graphitic C3N4 (g-C3N4) and C2N, are studied using ab initio molecular dynamics (AIMD). In particular, time-dependent vibrational sum frequency generation (TD-vSFG) spectra of the OD modes and also time-averaged vSFG spectra and OD frequency distributions are computed. This allows us to distinguish "free" (dangling) OD bonds from OD bonds that are bound in a H-bonded water network or at the surface - with subtle differences between the two surfaces and also to a pure water/air interface. It is found that the temporal decay of OD modes is very similar on both surfaces with a correlation time near 4 ps. In contrast, TD-vSFG spectra reveal that the interconversion time from "bonded" to "free" OD bonds is about 8 ps for water on C2N and thus twice as long as for g-C3N4, demonstrating a propensity of the former material to stabilize bonded OD bonds.

5.
Phys Chem Chem Phys ; 26(32): 21821-21831, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39101840

RESUMEN

Covalent organic frameworks (COFs) are a promising class of metal-free catalysts, offering a high structural and functional variety. Here, we systematically study imine-linked COFs with donor (D) and acceptor (A) groups using density functional theory (DFT). Using water splitting as a model reaction, we analyze the effects of protonation of the catalyst, the orientation of the imine linkage leading to different constitutional isomers, and solvation. In agreement with experimental results, we show that protonation decreases the band gap. In addition, COFs in which the donor is closer to the nitrogen atom of the imine group (DNCA) have lower band gaps than those in which the donor is closer to the carbon atom (DCNA). Three different D/A COFs are compared in this work, for which energies for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) and corresponding electrochemical overpotentials are computed. We show that reaction energies are very similar for DCNA and DNCA COFs. The differences in hydrogen evolution rates between the constitutional isomers observed experimentally in (photocatalytic) HER (Yang et al., Nat. Commun., 2022, 13, 6317), are proposed to be at least in part a consequence of differences in charge distribution.

6.
Phys Rev Lett ; 130(10): 106202, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36962030

RESUMEN

Understanding the molecular and electronic structure of solvated ions at surfaces requires an analysis of the interactions between the surface, the ions, and the solvent environment on equal footing. Here, we tackle this challenge by exploring the initial stages of Cs^{+} hydration on a Cu(111) surface by combining experiment and theory. Remarkably, we observe "inside-out" solvation of Cs^{+} ions, i.e., their preferential location at the perimeter of the water clusters on the metal surface. In addition, water-Cs complexes containing multiple Cs^{+} ions are observed to form at these surfaces. Established models based on maximum ion-water coordination and conventional solvation models cannot account for this situation, and the complex interplay of microscopic interactions is the key to a fundamental understanding.

7.
Chemistry ; 29(4): e202202967, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36223495

RESUMEN

The multicomponent approach allows to incorporate several functionalities into a single covalent organic framework (COF) and consequently allows the construction of bifunctional materials for cooperative catalysis. The well-defined structure of such multicomponent COFs is furthermore ideally suited for structure-activity relationship studies. We report a series of multicomponent COFs that contain acridine- and 2,2'-bipyridine linkers connected through 1,3,5-benzenetrialdehyde derivatives. The acridine motif is responsible for broad light absorption, while the bipyridine unit enables complexation of nickel catalysts. These features enable the usage of the framework materials as catalysts for light-mediated carbon-heteroatom cross-couplings. Variation of the node units shows that the catalytic activity correlates to the keto-enamine tautomer isomerism. This allows switching between high charge-carrier mobility and persistent, localized charge-separated species depending on the nodes, a tool to tailor the materials for specific reactions. Moreover, nickel-loaded COFs are recyclable and catalyze cross-couplings even using red light irradiation.

8.
Phys Chem Chem Phys ; 25(16): 11771-11779, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37067354

RESUMEN

Microcavities have been shown to influence the reactivity of molecular ensembles by strong coupling of molecular vibrations to quantized cavity modes. In quantum mechanical treatments of such scenarios, frequently idealized models with single molecules and scaled, effective molecule-cavity interactions or alternatively ensemble models with simplified model Hamiltonians are used. In this work, we go beyond these models by applying an ensemble variant of the Pauli-Fierz Hamiltonian for vibro-polaritonic chemistry and numerically solve the underlying time-dependent Schrödinger equation to study the cavity-induced quantum dynamics in an ensemble of thioacetylacetone (TAA) molecules undergoing hydrogen transfer under vibrational strong coupling (VSC) conditions. Beginning with a single molecule coupled to a single cavity mode, we show that the cavity indeed enforces hydrogen transfer from an enol to an enethiol configuration with transfer rates significantly increasing with light-matter interaction strength. This positive effect of the cavity on reaction rates is different from several other systems studied so far, where a retarding effect of the cavity on rates was found. It is argued that the cavity "catalyzes" the reaction by transfer of virtual photons to the molecule. The same concept applies to ensembles with up to N = 20 TAA molecules coupled to a single cavity mode, where an additional, significant, ensemble-induced collective isomerization rate enhancement is found. The latter is traced back to complex entanglement dynamics of the ensemble, which we quantify by means of von Neumann-entropies. A non-trivial dependence of the dynamics on ensemble size is found, clearly beyond scaled single-molecule models, which we interpret as transition from a multi-mode Rabi to a system-bath-type regime as N increases.

9.
J Phys Chem A ; 127(28): 5942-5955, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37417351

RESUMEN

The quantum mechanical description of many-electron dynamics in molecules driven by short laser pulses is at the heart of theoretical attochemistry. In addition to the formidable time-dependent electronic structure problem, the field faces the challenge that nuclear motion, ideally also treated quantum mechanically, may not be negligible, but scales enormously in effort. As a consequence, most first-principles calculations on ultrafast electron dynamics in molecules are done within the fixed-nuclear approximation. For laser-pulse excitation in H2+, where an "exact" treatment of the coupled nuclear-electron dynamics is possible, it has been shown that nuclear motion can have a nonnegligible impact on high harmonic generation (HHG) spectra (Witzorky et al., J. Chem. Theor. Comput. 2021, 17, 7353-7365). It is not so clear, however, how to include (quantum) nuclear motion also for more complicated molecules, with more electrons and/or nuclei, in particular when the electronic structure is described by correlated, multistate wavefunction methods such as the time-dependent configuration interaction (TD-CI). In this work, we suggest a scheme in which the Born-Oppenheimer potential energy surfaces of a molecule are approximated by model potentials (harmonic and asymptotic, as an expansion in 1/R), obtained from only a few ab initio calculations, with the prospect to treat complex molecular systems. The method is tested successfully for HHG by few-cycle laser pulses for the "exact" H2+ reference. It is then applied for diatomic molecules with more electrons and for a two-dimensional model of the water molecule using TD-CIS (S = single) for the electronic structure part.

10.
Photochem Photobiol Sci ; 21(2): 159-173, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34888753

RESUMEN

Thermally stable photoswitches that are driven with low-energy light are rare, yet crucial for extending the applicability of photoresponsive molecules and materials towards, e.g., living systems. Combined ortho-fluorination and -amination couples high visible light absorptivity of o-aminoazobenzenes with the extraordinary bistability of o-fluoroazobenzenes. Herein, we report a library of easily accessible o-aminofluoroazobenzenes and establish structure-property relationships regarding spectral qualities, visible light isomerization efficiency and thermal stability of the cis-isomer with respect to the degree of o-substitution and choice of amino substituent. We rationalize the experimental results with quantum chemical calculations, revealing the nature of low-lying excited states and providing insight into thermal isomerization. The synthesized azobenzenes absorb at up to 600 nm and their thermal cis-lifetimes range from milliseconds to months. The most unique example can be driven from trans to cis with any wavelength from UV up to 595 nm, while still exhibiting a thermal cis-lifetime of 81 days.


Asunto(s)
Luz , Isomerismo
11.
Phys Chem Chem Phys ; 24(24): 14709-14726, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35510618

RESUMEN

Porous, layered materials containing sp2-hybridized carbon and nitrogen atoms, offer through their tunable properties, a versatile route towards tailormade catalysts for electrochemistry and photochemistry. A key molecule interacting with these quasi two-dimensional materials (2DM) is water, and a photo(electro)chemical key reaction catalyzed by them, is water splitting into H2 and O2, with the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) as half reactions. The complexity of some C/N-based 2DM in contact with water raises special needs for their theoretical modelling, which in turn is needed for rational design of C/N-based catalysts. In this work, three classes of C/N-containing porous 2DM with varying pore sizes and C/N ratios, namely graphitic carbon nitride (g-C3N4), C2N, and poly(heptazine imides) (PHI), are studied with various computational methods. We elucidate the performance of different models and model chemistries (the combination of electronic structure method and basis set) for water and water fragment adsorption in the low-coverage regime. Further, properties related to the photo(electro)chemical activity like electrochemical overpotentials, band gaps, and optical excitation energies are in our focus. Specifically, periodic models will be tested vs. cluster models, and density functional theory (DFT) vs. wavefunction theory (WFT). This work serves as a basis for a systematic study of trends for the photo(electro)chemical activity of C/N-containing layered materials as a function of water content, pore size and density.

12.
J Chem Phys ; 157(3): 034305, 2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35868933

RESUMEN

We study theoretically the quantum dynamics and spectroscopy of rovibrational polaritons formed in a model system composed of a single rovibrating diatomic molecule, which interacts with two degenerate, orthogonally polarized modes of an optical Fabry-Pérot cavity. We employ an effective rovibrational Pauli-Fierz Hamiltonian in length gauge representation and identify three-state vibro-polaritonic conical intersections (VPCIs) between singly excited vibro-polaritonic states in a two-dimensional angular coordinate branching space. The lower and upper vibrational polaritons are of mixed light-matter hybrid character, whereas the intermediate state is purely photonic in nature. The VPCIs provide effective population transfer channels between singly excited vibrational polaritons, which manifest in rich interference patterns in rotational densities. Spectroscopically, three bright singly excited states are identified when an external infrared laser field couples to both a molecular and a cavity mode. The non-trivial VPCI topology manifests as pronounced multi-peak progression in the spectral region of the upper vibrational polariton, which is traced back to the emergence of rovibro-polaritonic light-matter hybrid states. Experimentally, ubiquitous spontaneous emission from cavity modes induces a dissipative reduction of intensity and peak broadening, which mainly influences the purely photonic intermediate state peak as well as the rovibro-polaritonic progression.

13.
J Chem Phys ; 156(15): 154305, 2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35459316

RESUMEN

It has been experimentally demonstrated that reaction rates for molecules embedded in microfluidic optical cavities are altered when compared to rates observed under "ordinary" reaction conditions. However, precise mechanisms of how strong coupling of an optical cavity mode to molecular vibrations affects the reactivity and how resonance behavior emerges are still under dispute. In the present work, we approach these mechanistic issues from the perspective of a thermal model reaction, the inversion of ammonia along the umbrella mode, in the presence of a single-cavity mode of varying frequency and coupling strength. A topological analysis of the related cavity Born-Oppenheimer potential energy surface in combination with quantum mechanical and transition state theory rate calculations reveals two quantum effects, leading to decelerated reaction rates in qualitative agreement with experiments: the stiffening of quantized modes perpendicular to the reaction path at the transition state, which reduces the number of thermally accessible reaction channels, and the broadening of the barrier region, which attenuates tunneling. We find these two effects to be very robust in a fluctuating environment, causing statistical variations of potential parameters, such as the barrier height. Furthermore, by solving the time-dependent Schrödinger equation in the vibrational strong coupling regime, we identify a resonance behavior, in qualitative agreement with experimental and earlier theoretical work. The latter manifests as reduced reaction probability when the cavity frequency ωc is tuned resonant to a molecular reactant frequency. We find this effect to be based on the dynamical localization of the vibro-polaritonic wavepacket in the reactant well.

14.
J Chem Phys ; 156(7): 074109, 2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35183075

RESUMEN

The quest for "chemical accuracy" is becoming more and more demanded in the field of structure and kinetics of molecules at solid surfaces. In this paper, as an example, we focus on the barrier for hydrogen diffusion on a α-Al2O3(0001) surface, aiming for a couple cluster singles, doubles, and perturbative triples [CCSD(T)]-level benchmark. We employ the density functional theory (DFT) optimized minimum and transition state structures reported by Heiden, Usvyat, and Saalfrank [J. Phys. Chem. C 123, 6675 (2019)]. The barrier is first evaluated at the periodic Hartree-Fock and local Møller-Plesset second-order perturbation (MP2) level of theory. The possible sources of errors are then analyzed, which includes basis set incompleteness error, frozen core, density fitting, local approximation errors, as well as the MP2 method error. Using periodic and embedded fragment models, corrections to these errors are evaluated. In particular, two corrections are found to be non-negligible (both from the chemical accuracy perspective and at the scale of the barrier value of 0.72 eV): the correction to the frozen core-approximation of 0.06 eV and the CCSD(T) correction of 0.07 eV. Our correlated wave function results are compared to barriers obtained from DFT. Among the tested DFT functionals, the best performing for this barrier is B3LYP-D3.

15.
J Chem Phys ; 156(21): 214702, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35676124

RESUMEN

Vibrational dynamics of adsorbates near surfaces plays both an important role for applied surface science and as a model lab for studying fundamental problems of open quantum systems. We employ a previously developed model for the relaxation of a D-Si-Si bending mode at a D:Si(100)-(2 × 1) surface, induced by a "bath" of more than 2000 phonon modes [Lorenz and P. Saalfrank, Chem. Phys. 482, 69 (2017)], to extend previous work along various directions. First, we use a Hierarchical Effective Mode (HEM) model [Fischer et al., J. Chem. Phys. 153, 064704 (2020)] to study relaxation of higher excited vibrational states than hitherto done by solving a high-dimensional system-bath time-dependent Schrödinger equation (TDSE). In the HEM approach, (many) real bath modes are replaced by (much less) effective bath modes. Accordingly, we are able to examine scaling laws for vibrational relaxation lifetimes for a realistic surface science problem. Second, we compare the performance of the multilayer multiconfigurational time-dependent Hartree (ML-MCTDH) approach with that of the recently developed coherent-state-based multi-Davydov-D2 Ansatz [Zhou et al., J. Chem. Phys. 143, 014113 (2015)]. Both approaches work well, with some computational advantages for the latter in the presented context. Third, we apply open-system density matrix theory in comparison with basically "exact" solutions of the multi-mode TDSEs. Specifically, we use an open-system Liouville-von Neumann (LvN) equation treating vibration-phonon coupling as Markovian dissipation in Lindblad form to quantify effects beyond the Born-Markov approximation.

16.
Angew Chem Int Ed Engl ; 61(21): e202114687, 2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35178847

RESUMEN

A cationic surfactant containing a spiropyran unit is prepared exhibiting a dual-responsive adjustability of its surface-active characteristics. The switching mechanism of the system relies on the reversible conversion of the non-ionic spiropyran (SP) to a zwitterionic merocyanine (MC) and can be controlled by adjusting the pH value and via light, resulting in a pH-dependent photoactivity: While the compound possesses a pronounced difference in surface activity between both forms under acidic conditions, this behavior is suppressed at a neutral pH level. The underlying switching processes are investigated in detail, and a thermodynamic explanation based on a combination of theoretical and experimental results is provided. This complex stimuli-responsive behavior enables remote-control of colloidal systems. To demonstrate its applicability, the surfactant is utilized for the pH-dependent manipulation of oil-in-water emulsions.

17.
Phys Chem Chem Phys ; 23(13): 7860-7874, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33245302

RESUMEN

Somewhat surprisingly, inverted ("O-down") CO adsorbates on NaCl(100) were recently observed experimentally after infrared vibrational excitation (Lau et al., Science, 2020, 367, 175-178). Here we characterize these species using periodic density functional theory and a quantum mechanical description of vibrations. We determine stationary points and minimum energy paths for CO inversion, for low (1/8 and 1/4 monolayers (ML)) and high (1 ML) coverages. Transition state theory is applied to estimate thermal rates for "C-down" to "O-down" isomerization and the reverse process. For the 1/4 ML p(1 × 1) structure, two-dimensional and three-dimensional potential energy surfaces and corresponding anharmonic vibrational eigenstates obtained from the time-independent nuclear Schrödinger equation are presented. We find (i) rather coverage-independent CO inversion energies (of about 0.08 eV or 8 kJ mol-1 per CO) and corresponding classical activation energies for "C-down" to "O-down" isomerization (of about 0.15 eV or 14 kJ mol-1 per CO); (ii) thermal isomerization rates at 22 K which are vanishingly small for the "C-down" to "O-down" isomerization but non-negligible for the back reaction; (iii) several "accidentally degenerate" pairs of eigenstates well below the barrier, each pair describing "C-down" to "O-down" localized states.

18.
Phys Chem Chem Phys ; 23(13): 7714-7723, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-32857089

RESUMEN

Vibrational relaxation of adsorbates is a sensitive tool to probe energy transfer at gas/solid and liquid/solid interfaces. The most direct way to study relaxation dynamics uses time-resolved spectroscopy. Here we report on a non-equilibrium ab initio molecular dynamics (NE-AIMD) methodology to model vibrational relaxation of OH vibrations on a hydroxylated, water-covered α-Al2O3(0001) surface. In our NE-AIMD approach, after exciting selected O-H bonds their coupling to surface phonons and to the water adlayer is analyzed in detail, by following both the energy flow in time, as well as the time-evolution of Vibrational Density of States (VDOS) curves. The latter are obtained from Time-dependent Correlation Functions (TCFs) and serve as prototypical, generic representatives of time-resolved vibrational spectra. As most important results, (i) we find a few-picosecond lifetime of the excited modes and (ii) identify both hydrogen-bonded aluminols and water molecules in the adsorbed water layer as main dissipative channels, while the direct coupling to Al2O3 surface phonons is of minor importance on the timescales of interest. Our NE-AIMD/TCF methodology is powerful for complex adsorbate systems, in principle even reacting ones, and opens a way towards time-resolved vibrational spectroscopy.

19.
Phys Chem Chem Phys ; 23(24): 13544-13560, 2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34105544

RESUMEN

With recent experimental advances in laser-driven electron dynamics in polyatomic molecules, the need arises for their reliable theoretical modelling. Among efficient, yet fairly accurate methods for many-electron dynamics are Time-Dependent Configuration Interaction Singles (TD-CIS) (a Wave Function Theory (WFT) method), and Real-Time Time-Dependent Density Functional Theory (RT-TD-DFT), respectively. Here we compare TD-CIS combined with extended Atomic Orbital (AO) bases, TD-CIS/AO, with RT-TD-DFT in a grid representation of the Kohn-Sham orbitals, RT-TD-DFT/Grid. Possible ionization losses are treated by complex absorbing potentials in energy space (for TD-CIS/AO) or real space (for RT-TD-DFT), respectively. The comparison is made for two test cases: (i) state-to-state transitions using resonant lasers (π-pulses), i.e., bound electron motion, and (ii) large-amplitude electron motion leading to High Harmonic Generation (HHG). Test systems are a H2 molecule and cis- and trans-1,2-dichlorethene, C2H2Cl2, (DCE). From time-dependent electronic energies, dipole moments and from HHG spectra, the following observations are made: first, for bound state-to-state transitions enforced by π-pulses, TD-CIS nicely accounts for the expected population inversion in contrast to RT-TD-DFT, in agreement with earlier findings. Secondly, when using laser pulses under non-resonant conditions, dipole moments and lower harmonics in HHG spectra are obtained by TD-CIS/AO which are in good agreement with those obtained with RT-TD-DFT/Grid. Deviations become larger for higher harmonics and at low laser intensities, i.e., for low-intensity HHG signals. We also carefully test effects of basis sets for TD-CIS/AO and grid size for RT-TD-DFT/Grid, different exchange-correlation functionals in RT-TD-DFT, and absorbing boundaries. Finally, for the present examples, TD-CIS/AO is observed to be at least an order of magnitude more computationally efficient than RT-TD-DFT/Grid.

20.
J Chem Phys ; 154(23): 234305, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34241262

RESUMEN

Recent experiments on laser-dissociation of aligned homonuclear diatomic molecules show an asymmetric forward-backward (spatial) electron-localization along the laser polarization axis. Most theoretical models attribute this asymmetry to interference effects between gerade and ungerade vibronic states. Presumably due to alignment, these models neglect molecular rotations and hence infer an asymmetric (post-dissociation) charge distribution over the two identical nuclei. In this paper, we question the equivalence that is made between spatial electron-localization, observed in experiments, and atomic electron-localization, alluded by these theoretical models. We show that (seeming) agreement between these models and experiments is due to an unfortunate omission of nuclear permutation symmetry, i.e., quantum statistics. Enforcement of the latter requires mandatory inclusion of the molecular rotational degree of freedom, even for perfectly aligned molecules. Unlike previous interpretations, we ascribe spatial electron-localization to the laser creation of a rovibronic wavepacket that involves field-free molecular eigenstates with opposite space-inversion symmetry i.e., even and odd parity. Space-inversion symmetry breaking would then lead to an asymmetric distribution of the (space-fixed) electronic density over the forward and backward hemisphere. However, owing to the simultaneous coexistence of two indistinguishable molecular orientational isomers, our analytical and computational results show that the post-dissociation electronic density along a specified space-fixed axis is equally shared between the two identical nuclei-a result that is in perfect accordance with the principle of the indistinguishability of identical particles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA