Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Ind Med ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965801

RESUMEN

OBJECTIVES: To update and extend the examination of cancer incidence in a cohort of Danish firefighters, now adding 7 years of follow-up and 2766 additional firefighters. The primary focus was directed toward cancer sites that recently contributed to the hazard evaluation conducted by the International Agency for Research on Cancer (IARC). METHODS: The updated cohort consisted of 11,827 male Danish firefighters who were followed up for cancer from 1968 to 2021. Cohort cancer morbidity was compared with a working population reference group, and standardized incidence ratios (SIR) were used for estimation of relative risks, along with 95% confidence intervals (95% CI). RESULTS: Among full-time firefighters, SIR of skin melanoma was 1.30 (95% CI: 1.02-1.66), and SIR = 1.37 (95% CI: 1.02-1.85) for over 5 years of employment. Slightly positive associations were also observed for cancer of the urinary bladder (SIR = 1.16; 95% CI: 0.93-1.45), prostate (SIR = 1.11; 95% CI: 0.97-1.28), and testis (SIR = 1.11; 95% CI: 0.75-1.63). CONCLUSIONS: This updated study provides evidence indicating an elevated risk of skin melanoma in firefighters. Consistent with IARC's evaluation, we also identified positive associations for urinary bladder, prostate, and testis cancer. In contrast, our findings did not suggest an increased risk of colon cancer, non-Hodgkin lymphoma, and mesothelioma. The latter may be due to small numbers in our still relatively young cohort. Continuous follow-up for cancer in firefighters is warranted, including assessment of influence from surveillance bias.

2.
Environ Health ; 20(1): 10, 2021 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-33549096

RESUMEN

BACKGROUND: Airport personnel are at risk of occupational exposure to jet engine emissions, which similarly to diesel exhaust emissions include volatile organic compounds and particulate matter consisting of an inorganic carbon core with associated polycyclic aromatic hydrocarbons, and metals. Diesel exhaust is classified as carcinogenic and the particulate fraction has in itself been linked to several adverse health effects including cancer. METHOD: In this review, we summarize the available scientific literature covering human health effects of exposure to airport emissions, both in occupational settings and for residents living close to airports. We also report the findings from the limited scientific mechanistic studies of jet engine emissions in animal and cell models. RESULTS: Jet engine emissions contain large amounts of nano-sized particles, which are particularly prone to reach the lower airways upon inhalation. Size of particles and emission levels depend on type of aircraft, engine conditions, and fuel type, as well as on operation modes. Exposure to jet engine emissions is reported to be associated with biomarkers of exposure as well as biomarkers of effect among airport personnel, especially in ground-support functions. Proximity to running jet engines or to the airport as such for residential areas is associated with increased exposure and with increased risk of disease, increased hospital admissions and self-reported lung symptoms. CONCLUSION: We conclude that though the literature is scarce and with low consistency in methods and measured biomarkers, there is evidence that jet engine emissions have physicochemical properties similar to diesel exhaust particles, and that exposure to jet engine emissions is associated with similar adverse health effects as exposure to diesel exhaust particles and other traffic emissions.


Asunto(s)
Aeronaves , Exposición por Inhalación/efectos adversos , Exposición Profesional/efectos adversos , Material Particulado/toxicidad , Emisiones de Vehículos/toxicidad , Animales , Humanos , Características de la Residencia
3.
Part Fibre Toxicol ; 17(1): 32, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32677973

RESUMEN

In response to the Letter to the Editor by Kevin Driscoll et al., we certainly agree that particle clearance halftimes are increased with increasing lung burden in rats, hamsters and mice, whereas complete inhibition of particle clearance has only been observed in rats, and only at high particle concentrations (50 mg/m3). Where we disagree with Kevin Driscoll and colleagues, is on the implications of the increased clearance halftimes observed at higher lung burden. We argue that it does not hamper the extrapolations from relatively high dose levels to lower dose levels.Furthermore, we highlight, again, the challenges of detecting particle-induced lung cancer in epidemiological studies where occupational, particle-induced lung cancer has to be detected on top of the background lung cancer incidence. Almost all available epidemiological studies on carbon black and titanium dioxide suffer from a number of limitations, including lack of control for smoking, the use of background population cancer rates as reference in the US studies, lack of information regarding particle size of the exposure, and incomplete follow-up for cause of death of the study population.


Asunto(s)
Neoplasias Pulmonares , Pulmón , Animales , Cricetinae , Humanos , Ratones , Tamaño de la Partícula , Ratas , Hollín , Titanio
4.
Part Fibre Toxicol ; 16(1): 44, 2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31752898

RESUMEN

Recently, Borm and Driscoll published a commentary discussing grouping of Poorly Soluble particles of Low Toxicity (PSLTs) and the use of rats as an animal model for human hazard assessment of PSLTs (Particle and Fibre Toxicology (2019) 16(1):11). The commentary was based on the scientific opinion of several international experts on these topics. The general conclusion from the authors was a cautious approach towards using chronic inhalation studies in rats for human hazard assessment of PSLTs. This was based on evidence of inhibition of particle clearance leading to overload in the rats after high dose exposure, and a suggested over reactivity of rat lung cancer responses compared to human risk.As a response to the commentary, we here discuss evidence from the scientific literature showing that a) diesel exhaust particles, carbon black nanoparticles and TiO2 nanoparticles have similar carcinogenic potential in rats, and induce lung cancer at air concentrations below the air concentrations that inhibit particle clearance in rats, and b) chronic inhalation studies of diesel exhaust particles are less sensitive than epidemiological studies, leading to higher risk estimates for lung cancer. Thus, evidence suggests that the chronic inhalation study in rats can be used for assessing lung cancer risk insoluble nanomaterials.


Asunto(s)
Neoplasias Pulmonares , Pulmón , Administración por Inhalación , Animales , Humanos , Ratas , Hollín , Emisiones de Vehículos
6.
Mutagenesis ; 32(6): 581-597, 2017 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-29301028

RESUMEN

Intratracheal instillation serves as a model for inhalation exposure. However, for this, materials are dispersed in appropriate media that may influence toxicity. We tested whether different intratracheal instillation dispersion media influence the pulmonary toxicity of different nanomaterials. Rodents were intratracheally instilled with 162 µg/mouse/1620 µg/rat carbon black (CB), 67 µg/mouse titanium dioxide nanoparticles (TiO2) or 54 µg/mouse carbon nanotubes (CNT). The dispersion media were as follows: water (CB, TiO2); 2% serum in water (CB, CNT, TiO2); 0.05% serum albumin in water (CB, CNT, TiO2); 10% bronchoalveolar lavage fluid in 0.9% NaCl (CB), 10% bronchoalveolar lavage (BAL) fluid in water (CB) or 0.1% Tween-80 in water (CB). Inflammation was measured as pulmonary influx of neutrophils into bronchoalveolar fluid, and DNA damage as DNA strand breaks in BAL cells by comet assay. Inflammation was observed for all nanomaterials (except 38-nm TiO2) in all dispersion media. For CB, inflammation was dispersion medium dependent. Increased levels of DNA strand breaks for CB were observed only in water, 2% serum and 10% BAL fluid in 0.9% NaCl. No dispersion medium-dependent effects on genotoxicity were observed for TiO2, whereas CNT in 2% serum induced higher DNA strand break levels than in 0.05% serum albumin. In conclusion, the dispersion medium was a determinant of CB-induced inflammation and genotoxicity. Water seemed to be the best dispersion medium to mimic CB inhalation, exhibiting DNA strand breaks with only limited inflammation. The influence of dispersion media on nanomaterial toxicity should be considered in the planning of intratracheal investigations.


Asunto(s)
Roturas del ADN de Doble Cadena , Nanopartículas/toxicidad , Nanotubos de Carbono/toxicidad , Neumonía/patología , Hollín/toxicidad , Titanio/toxicidad , Animales , Líquido del Lavado Bronquioalveolar/citología , Roturas del ADN de Doble Cadena/efectos de los fármacos , Femenino , Pulmón/metabolismo , Pulmón/patología , Ratones Endogámicos C57BL , Neutrófilos/metabolismo , Tamaño de la Partícula , ARN Mensajero/genética , ARN Mensajero/metabolismo , Agua
7.
Mutagenesis ; 32(1): 47-57, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27658823

RESUMEN

The influence of surface charge of nanomaterials on toxicological effects is not yet fully understood. We investigated the inflammatory response, the acute phase response and the genotoxic effect of two different titanium dioxide nanoparticles (TiO2 NPs) following a single intratracheal instillation. NRCWE-001 was unmodified rutile TiO2 with endogenous negative surface charge, whereas NRCWE-002 was surface modified to be positively charged. C57BL/6J BomTac mice received 18, 54 and 162 µg/mouse and were humanely killed 1, 3 and 28 days post-exposure. Vehicle controls were tested alongside for comparison. The cellular composition and protein concentration were determined in bronchoalveolar lavage (BAL) fluid as markers for an inflammatory response. Pulmonary and systemic genotoxicity was analysed by the alkaline comet assay as DNA strand breaks in BAL cells, lung and liver tissue. The pulmonary and hepatic acute phase response was analysed by Saa3 mRNA levels in lung tissue or Saa1 mRNA levels in liver tissue by real-time quantitative polymerase chain reaction. Instillation of NRCWE-001 and -002 both induced a dose-dependent neutrophil influx into the lung lining fluid and Saa3 mRNA levels in lung tissue at all assessed time points. There was no statistically significant difference between NRCWE-001 and NRCWE-002. Exposure to both TiO2 NPs induced increased levels of DNA strand breaks in lung tissue at all doses 1 and 28 days post-exposure and NRCWE-002 at the low and middle dose 3 days post-exposure. The DNA strand break levels were statistically significantly different for NRCWE-001 and -002 for liver and for BAL cells, but no consistent pattern was observed. In conclusion, functionalisation of reactive negatively charged rutile TiO2 to positively charged did not consistently influence pulmonary toxicity of the studied TiO2 NPs.


Asunto(s)
Reacción de Fase Aguda , Daño del ADN , Hígado/efectos de los fármacos , Pulmón/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Titanio/toxicidad , Animales , Ensayo Cometa , ADN/efectos de los fármacos , Femenino , Hígado/inmunología , Hígado/metabolismo , Pulmón/inmunología , Pulmón/metabolismo , Nanopartículas del Metal/química , Ratones , Estrés Oxidativo/efectos de los fármacos , Titanio/farmacología
9.
Toxicol Appl Pharmacol ; 289(3): 573-88, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26551751

RESUMEN

Inhalation of carbon black nanoparticles (CBNPs) causes pulmonary inflammation; however, time course data to evaluate the detailed evolution of lung inflammatory responses are lacking. Here we establish a time-series of lung inflammatory response to CBNPs. Female C57BL/6 mice were intratracheally instilled with 162 µg CBNPs alongside vehicle controls. Lung tissues were examined 3h, and 1, 2, 3, 4, 5, 14, and 42 days (d) post-exposure. Global gene expression and pulmonary inflammation were assessed. DNA damage was evaluated in bronchoalveolar lavage (BAL) cells and lung tissue using the comet assay. Increased neutrophil influx was observed at all time-points. DNA strand breaks were increased in BAL cells 3h post-exposure, and in lung tissues 2-5d post-exposure. Approximately 2600 genes were differentially expressed (± 1.5 fold; p ≤ 0.05) across all time-points in the lungs of exposed mice. Altered transcript levels were associated with immune-inflammatory response and acute phase response pathways, consistent with the BAL profiles and expression changes found in common respiratory infectious diseases. Genes involved in DNA repair, apoptosis, cell cycle regulation, and muscle contraction were also differentially expressed. Gene expression changes associated with inflammatory response followed a biphasic pattern, with initial changes at 3h post-exposure declining to base-levels by 3d, increasing again at 14 d, and then persisting to 42 d post-exposure. Thus, this single CBNP exposure that was equivalent to nine 8-h working days at the current Danish occupational exposure limit induced biphasic inflammatory response in gene expression that lasted until 42 d post-exposure, raising concern over the chronic effects of CBNP exposure.


Asunto(s)
Expresión Génica/efectos de los fármacos , Pulmón/efectos de los fármacos , Nanopartículas/efectos adversos , Neumonía/inducido químicamente , Hollín/efectos adversos , Tráquea/efectos de los fármacos , Administración por Inhalación , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Líquido del Lavado Bronquioalveolar/química , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Daño del ADN/efectos de los fármacos , Daño del ADN/genética , Reparación del ADN/efectos de los fármacos , Reparación del ADN/genética , Femenino , Ratones , Ratones Endogámicos C57BL , Exposición Profesional/efectos adversos , Neumonía/genética
10.
Toxicol Appl Pharmacol ; 283(3): 210-22, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25620056

RESUMEN

Adverse lung effects following pulmonary exposure to multi-walled carbon nanotubes (MWCNTs) are well documented in rodents. However, systemic effects are less understood. Epidemiological studies have shown increased cardiovascular disease risk after pulmonary exposure to airborne particles, which has led to concerns that inhalation exposure to MWCNTs might pose similar risks. We analyzed parameters related to cardiovascular disease, including plasma acute phase response (APR) proteins and plasma lipids, in female C57BL/6 mice exposed to a single intratracheal instillation of 0, 18, 54 or 162µg/mouse of small, entangled (CNTSmall, 0.8±0.1µm long) or large, thick MWCNTs (CNTLarge, 4±0.4µm long). Liver tissues and plasma were harvested 1, 3 and 28days post-exposure. In addition, global hepatic gene expression, hepatic cholesterol content and liver histology were used to assess hepatic effects. The two MWCNTs induced similar systemic responses despite their different physicochemical properties. APR proteins SAA3 and haptoglobin, plasma total cholesterol and low-density/very low-density lipoprotein were significantly increased following exposure to either MWCNTs. Plasma SAA3 levels correlated strongly with pulmonary Saa3 levels. Analysis of global gene expression revealed perturbation of the same biological processes and pathways in liver, including the HMG-CoA reductase pathway. Both MWCNTs induced similar histological hepatic changes, with a tendency towards greater response following CNTLarge exposure. Overall, we show that pulmonary exposure to two different MWCNTs induces similar systemic and hepatic responses, including changes in plasma APR, lipid composition, hepatic gene expression and liver morphology. The results link pulmonary exposure to MWCNTs with risk of cardiovascular disease.


Asunto(s)
Proteínas de Fase Aguda/metabolismo , Reacción de Fase Aguda/inducido químicamente , Enfermedades Cardiovasculares/inducido químicamente , Colesterol/sangre , Exposición por Inhalación/efectos adversos , Nanotubos de Carbono/toxicidad , Proteínas de Fase Aguda/genética , Reacción de Fase Aguda/sangre , Reacción de Fase Aguda/genética , Animales , Biomarcadores/sangre , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/genética , Femenino , Regulación de la Expresión Génica , Homeostasis , Mediadores de Inflamación/sangre , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Ratones Endogámicos C57BL , Tamaño de la Partícula , ARN Mensajero/metabolismo , Medición de Riesgo , Factores de Tiempo
11.
Toxicol Appl Pharmacol ; 284(1): 16-32, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25554681

RESUMEN

Multi-walled carbon nanotubes (MWCNTs) are an inhomogeneous group of nanomaterials that vary in lengths, shapes and types of metal contamination, which makes hazard evaluation difficult. Here we present a toxicogenomic analysis of female C57BL/6 mouse lungs following a single intratracheal instillation of 0, 18, 54 or 162 µg/mouse of a small, curled (CNT(Small), 0.8 ± 0.1 µm in length) or large, thick MWCNT (CNT(Large), 4 ± 0.4 µm in length). The two MWCNTs were extensively characterized by SEM and TEM imaging, thermogravimetric analysis, and Brunauer-Emmett-Teller surface area analysis. Lung tissues were harvested 24h, 3 days and 28 days post-exposure. DNA microarrays were used to analyze gene expression, in parallel with analysis of bronchoalveolar lavage fluid, lung histology, DNA damage (comet assay) and the presence of reactive oxygen species (dichlorodihydrofluorescein assay), to profile and characterize related pulmonary endpoints. Overall changes in global transcription following exposure to CNT(Small) or CNT(Large) were similar. Both MWCNTs elicited strong acute phase and inflammatory responses that peaked at day 3, persisted up to 28 days, and were characterized by increased cellular influx in bronchoalveolar lavage fluid, interstitial pneumonia and gene expression changes. However, CNT(Large) elicited an earlier onset of inflammation and DNA damage, and induced more fibrosis and a unique fibrotic gene expression signature at day 28, compared to CNT(Small). The results indicate that the extent of change at the molecular level during early response phases following an acute exposure is greater in mice exposed to CNT(Large), which may eventually lead to the different responses observed at day 28.


Asunto(s)
Mediadores de Inflamación/metabolismo , Pulmón/efectos de los fármacos , Nanotubos de Carbono/toxicidad , Neumonía/inducido químicamente , Fibrosis Pulmonar/inducido químicamente , Transcripción Genética/efectos de los fármacos , Animales , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/inmunología , Daño del ADN , Relación Dosis-Respuesta a Droga , Femenino , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Exposición por Inhalación/efectos adversos , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/patología , Ratones Endogámicos C57BL , Tamaño de la Partícula , Neumonía/genética , Neumonía/inmunología , Neumonía/metabolismo , Neumonía/patología , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/inmunología , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Especies Reactivas de Oxígeno , Medición de Riesgo , Propiedades de Superficie , Factores de Tiempo , Toxicogenética/métodos
12.
Mutagenesis ; 30(4): 499-507, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25771385

RESUMEN

We investigated the inflammatory response, acute phase response and genotoxic effect of diesel exhaust particles (DEPs, NIST1650b) following a single intratracheal instillation. C57BL/6J BomTac mice received 18, 54 or 162 µg/mouse and were killed 1, 3 and 28 days post-exposure. Vehicle controls and the benchmark particle carbon black (CB, Printex 90; 162 µg/mouse) were tested alongside for comparison. The cellular composition and protein concentration were determined in bronchoalveolar lavage (BAL) fluid as markers for an inflammatory response. Pulmonary and systemic genotoxicity was analysed by the alkaline comet assay as DNA strand breaks in BAL cells, lung and liver tissue. The pulmonary acute phase response was analysed by Saa3 mRNA levels by real-time quantitative polymerase chain reaction. Instillation of DEP induced a strong neutrophil influx 1 and 3 days, but not 28 days post-exposure. Saa3 mRNA levels were increased at all time point for the highest dose and 28 days post-exposure for the middle dose. DEP increased levels of DNA strand breaks in lung tissue for all doses 1 day post-exposure and after 28 days for mid- and high-dose groups. Pulmonary exposure to DEP induced transient inflammation but long-lasting pulmonary acute phase response as well as genotoxicity in lung tissue 28 days post-exposure. The observed long-term pulmonary genotoxicity by DEP was less than the previously observed genotoxicity for CB using identical experimental set-up.


Asunto(s)
Reacción de Fase Aguda/etiología , Daño del ADN , Neumonía/etiología , Emisiones de Vehículos/toxicidad , Reacción de Fase Aguda/metabolismo , Reacción de Fase Aguda/patología , Animales , Líquido del Lavado Bronquioalveolar , Células Cultivadas , Ensayo Cometa , Femenino , Ratones , Ratones Endogámicos C57BL , Neumonía/metabolismo , Neumonía/patología , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína Amiloide A Sérica/genética , Proteína Amiloide A Sérica/metabolismo
13.
Part Fibre Toxicol ; 11: 9, 2014 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-24521051

RESUMEN

BACKGROUND: To assess the risk of all nanomaterials (NMs) on a case-by-case basis is challenging in terms of financial, ethical and time resources. Instead a more intelligent approach to knowledge gain and risk assessment is required. METHODS: A framework of future research priorities was developed from the accorded opinion of experts covering all major stake holder groups (government, industry, academia, funders and NGOs). It recognises and stresses the major topics of physicochemical characterisation, exposure identification, hazard identification and modelling approaches as key components of the current and future risk assessment of NMs. RESULTS: The framework for future research has been developed from the opinions of over 80 stakeholders, that describes the research priorities for effective development of an intelligent testing strategy (ITS) to allow risk evaluation of NMs. In this context, an ITS is a process that allows the risks of NMs to be assessed accurately, effectively and efficiently, thereby reducing the need to test NMs on a case-by-case basis.For each of the major topics of physicochemical characterisation, exposure identification, hazard identification and modelling, key-priority research areas are described via a series of stepping stones, or hexagon diagrams structured into a time perspective. Importantly, this framework is flexible, allowing individual stakeholders to identify where their own activities and expertise are positioned within the prioritisation pathway and furthermore to identify how they can effectively contribute and structure their work accordingly. In other words, the prioritisation hexagon diagrams provide a tool that individual stakeholders can adapt to meet their own particular needs and to deliver an ITS for NMs risk assessment. Such an approach would, over time, reduce the need for testing by increasing the reliability and sophistication of in silico approaches.The manuscript includes an appraisal of how this framework relates to the current risk assessment approaches and how future risk assessment could adapt to accommodate these new approaches. A full report is available in electronic format (pdf) at http://www.nano.hw.ac.uk/research-projects/itsnano.html. CONCLUSION: ITS-NANO has delivered a detailed, stakeholder driven and flexible research prioritisation (or strategy) tool, which identifies specific research needs, suggests connections between areas, and frames this in a time-perspective.


Asunto(s)
Nanotecnología , Investigación , Seguridad , Pruebas de Toxicidad/normas , Exposición a Riesgos Ambientales , Humanos , Informática , Legislación Médica , Modelos Estadísticos , Nanopartículas/química , Nanopartículas/toxicidad , Nanotecnología/legislación & jurisprudencia , Investigación/legislación & jurisprudencia , Medición de Riesgo , Seguridad/legislación & jurisprudencia , Pruebas de Toxicidad/tendencias
14.
Ann Occup Hyg ; 58(8): 983-94, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25030708

RESUMEN

The release of dust generated during sanding or sawing of nanocomposites was compared with conventional products without nanomaterials. Epoxy-based polymers with and without carbon nanotubes, and paints with different amounts of nano-sized titanium dioxide, were machined in a closed aerosol chamber. The temporal evolution of the aerosol concentration and size distribution were measured simultaneously. The morphology of collected dust by scanning electron microscopy was different depending on the type of nanocomposites: particles from carbon nanotubes (CNTs) nanocomposites had protrusions on their surfaces and aggregates and agglomerates are attached to the paint matrix in particles emitted from alkyd paints. We observed no significant differences in the particle size distributions when comparing sanding dust from nanofiller containing products with dust from conventional products. Neither did we observe release of free nanomaterials. Instead, the nanomaterials were enclosed or partly enclosed in the matrix. A source strength term Si (cm(-3) s(-1)) that describes particle emission rates from continuous sources was introduced. Comparison between the Si parameters derived from sanding different materials allows identification of potential effects of addition of engineered nanoparticles to a composite.


Asunto(s)
Polvo/análisis , Compuestos Epoxi/análisis , Exposición por Inhalación/análisis , Nanocompuestos/análisis , Pintura , Aerosoles/análisis , Contaminantes Ocupacionales del Aire/análisis , Humanos , Microscopía Electrónica de Rastreo/métodos , Nanocompuestos/clasificación , Nanopartículas , Nanotubos de Carbono , Tamaño de la Partícula , Titanio/análisis , Madera
15.
Int J Hyg Environ Health ; 256: 114298, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38056371

RESUMEN

OBJECTIVES: Hexavalent chromium (Cr(VI)) is classified as a human carcinogen. Occupational Cr(VI) exposure can occur during different work processes, but the current exposure to Cr(VI) at Swedish workplaces is unknown. METHODS: This cross-sectional study (SafeChrom) recruited non-smoking men and women from 14 companies with potential Cr(VI) exposure (n = 113) and controls from 6 companies without Cr(VI) exposure (n = 72). Inhalable Cr(VI) was measured by personal air sampling (outside of respiratory protection) in exposed workers. Total Cr was measured in urine (pre- and post-shift, density-adjusted) and red blood cells (RBC) (reflecting Cr(VI)) in exposed workers and controls. The Bayesian tool Expostats was used to assess risk and evaluate occupational exposure limit (OEL) compliance. RESULTS: The exposed workers performed processing of metal products, steel production, welding, plating, and various chemical processes. The geometric mean concentration of inhalable Cr(VI) in exposed workers was 0.15 µg/m3 (95% confidence interval: 0.11-0.21). Eight of the 113 exposed workers (7%) exceeded the Swedish OEL of 5 µg/m3, and the Bayesian analysis estimated the share of OEL exceedances up to 19.6% for stainless steel welders. Median post-shift urinary (0.60 µg/L, 5th-95th percentile 0.10-3.20) and RBC concentrations (0.73 µg/L, 0.51-2.33) of Cr were significantly higher in the exposed group compared with the controls (urinary 0.10 µg/L, 0.06-0.56 and RBC 0.53 µg/L, 0.42-0.72). Inhalable Cr(VI) correlated with urinary Cr (rS = 0.64) and RBC-Cr (rS = 0.53). Workers within steel production showed the highest concentrations of inhalable, urinary and RBC Cr. Workers with inferred non-acceptable local exhaustion ventilation showed significantly higher inhalable Cr(VI), urinary and RBC Cr concentrations compared with those with inferred acceptable ventilation. Furthermore, workers with inferred correct use of respiratory protection were exposed to significantly higher concentrations of Cr(VI) in air and had higher levels of Cr in urine and RBC than those assessed with incorrect or no use. Based on the Swedish job-exposure-matrix, approximately 17 900 workers were estimated to be occupationally exposed to Cr(VI) today. CONCLUSIONS: Our study demonstrates that some workers in Sweden are exposed to high levels of the non-threshold carcinogen Cr(VI). Employers and workers seem aware of Cr(VI) exposure, but more efficient exposure control strategies are required. National strategies aligned with the European strategies are needed in order to eliminate this cause of occupational cancer.


Asunto(s)
Contaminantes Ocupacionales del Aire , Exposición Profesional , Masculino , Humanos , Femenino , Contaminantes Ocupacionales del Aire/análisis , Suecia , Estudios Transversales , Teorema de Bayes , Monitoreo del Ambiente , Cromo/orina , Exposición Profesional/análisis , Acero Inoxidable/análisis , Carcinógenos
16.
Toxicol Appl Pharmacol ; 269(3): 250-62, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23557971

RESUMEN

We investigated gene expression, protein synthesis, and particle retention in mouse lungs following intratracheal instillation of varying doses of nano-sized titanium dioxide (nano-TiO2). Female C57BL/6 mice were exposed to rutile nano-TiO2 via single intratracheal instillations of 18, 54, and 162µg/mouse. Mice were sampled 1, 3, and 28days post-exposure. The deposition of nano-TiO2 in the lungs was assessed using nanoscale hyperspectral microscopy. Biological responses in the pulmonary system were analyzed using DNA microarrays, pathway-specific real-time RT-PCR (qPCR), gene-specific qPCR arrays, and tissue protein ELISA. Hyperspectral mapping showed dose-dependent retention of nano-TiO2 in the lungs up to 28days post-instillation. DNA microarray analysis revealed approximately 3000 genes that were altered across all treatment groups (±1.3 fold; p<0.1). Several inflammatory mediators changed in a dose- and time-dependent manner at both the mRNA and protein level. Although no influx of neutrophils was detected at the low dose, changes in the expression of several genes and proteins associated with inflammation were observed. Resolving inflammation at the medium dose, and lack of neutrophil influx in the lung fluid at the low dose, were associated with down-regulation of genes involved in ion homeostasis and muscle regulation. Our gene expression results imply that retention of nano-TiO2 in the absence of inflammation over time may potentially perturb calcium and ion homeostasis, and affect smooth muscle activities.


Asunto(s)
Expresión Génica/efectos de los fármacos , Pulmón/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Titanio/toxicidad , Animales , Relación Dosis-Respuesta a Droga , Femenino , Perfilación de la Expresión Génica , Inflamación/metabolismo , Pulmón/química , Pulmón/metabolismo , Nanopartículas del Metal/análisis , Ratones , Ratones Endogámicos C57BL , Titanio/análisis
18.
Mutagenesis ; 28(6): 699-707, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24136994

RESUMEN

The comet analysis of DNA strand break levels in tissues and cells has become a common method of screening for genotoxicity. The large majority of published studies have used fresh tissues and cells processed immediately after collection. However, we have used frozen tissues and cells for more than 10 years, and we believe that freezing samples improve efficiency of the method. We compared DNA strand break levels measured in fresh and frozen bronchoalveolar cells, and lung and liver tissues from mice exposed to the known mutagen methyl methanesulphonate (0, 25, 75, 112.5mg/kg). We used a high-throughput comet protocol with fully automated scoring of DNA strand break levels. The overall results from fresh and frozen samples were in agreement [R (2) = 0.93 for %DNA in tail (%TDNA) and R (2) = 0.78 for tail length (TL)]. A slightly increased %TDNA was observed in lung and liver tissue from vehicle controls; and TL was slightly reduced in bronchoalveolar lavage cells from the high-dose group. In our comet protocol, a small block of tissue designated for comet analysis is frozen immediately at tissue collection and kept deep frozen until rapidly homogenised and embedded in agarose. To demonstrate the feasibility of long-term freezing of samples, we analysed the day-to-day variation of our internal historical negative and positive comet assay controls collected over a 10-year period (1128 observations, 11 batches of frozen untreated and H2O2-treated A549 lung epithelial cells). The H2O2 treatment explained most of the variation 57-77% and the day-to-day variation was only 2-12%. The presented protocol allows analysis of samples collected over longer time span, at different locations, with reduced variation by reducing number of electrophoreses and is suitable for both toxicological and epidemiological studies. The use of frozen tissues; however, requires great care during preparation before analysis, with handling as a major risk factor.


Asunto(s)
Ensayo Cometa/métodos , Criopreservación , Roturas del ADN de Doble Cadena , Animales , Líquido del Lavado Bronquioalveolar , Línea Celular Tumoral , Femenino , Humanos , Hígado , Pulmón , Ratones , Ratones Endogámicos C57BL
19.
Nanotoxicology ; 17(4): 338-371, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37300873

RESUMEN

This study collects toxicity data from animal inhalation studies of some nanomaterials and their bulk and ionic counterparts. To allow potential grouping and interpretations, we retrieved the primary physicochemical and exposure data to the extent possible for each of the materials. Reviewed materials are compounds (mainly elements, oxides and salts) of carbon (carbon black, carbon nanotubes, and graphene), silver, cerium, cobalt, copper, iron, nickel, silicium (amorphous silica and quartz), titanium (titanium dioxide), and zinc (chemical symbols: Ag, C, Ce, Co, Cu, Fe, Ni, Si, Ti, TiO2, and Zn). Collected endpoints are: a) pulmonary inflammation, measured as neutrophils in bronchoalveolar lavage (BAL) fluid at 0-24 hours after last exposure; and b) genotoxicity/carcinogenicity. We present the dose descriptors no-observed-adverse-effect concentrations (NOAECs) and lowest-observed-adverse-effect concentrations (LOAECs) for 88 nanomaterial investigations in data-library and graph formats. We also calculate 'the value where 25% of exposed animals develop tumors' (T25) for carcinogenicity studies. We describe how the data may be used for hazard assessment of the materials using carbon black as an example. The collected data also enable hazard comparison between different materials. An important observation for poorly soluble particles is that the NOAEC for neutrophil numbers in general lies around 1 to 2 mg/m3. We further discuss why some materials' dose descriptors deviate from this level, likely reflecting the effects of the ionic form and effects of the fiber-shape. Finally, we discuss that long-term studies, in general, provide the lowest dose descriptors, and dose descriptors are positively correlated with particle size for near-spherical materials.


Asunto(s)
Nanoestructuras , Nanotubos de Carbono , Neumonía , Animales , Pulmón , Hollín/toxicidad , Nanoestructuras/toxicidad , Líquido del Lavado Bronquioalveolar , Tamaño de la Partícula , Exposición por Inhalación
20.
Part Fibre Toxicol ; 9: 5, 2012 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-22300514

RESUMEN

BACKGROUND: Widespread occupational exposure to carbon black nanoparticles (CBNPs) raises concerns over their safety. CBNPs are genotoxic in vitro but less is known about their genotoxicity in various organs in vivo. METHODS: We investigated inflammatory and acute phase responses, DNA strand breaks (SB) and oxidatively damaged DNA in C57BL/6 mice 1, 3 and 28 days after a single instillation of 0.018, 0.054 or 0.162 mg Printex 90 CBNPs, alongside sham controls. Bronchoalveolar lavage (BAL) fluid was analyzed for cellular composition. SB in BAL cells, whole lung and liver were assessed using the alkaline comet assay. Formamidopyrimidine DNA glycosylase (FPG) sensitive sites were assessed as an indicator of oxidatively damaged DNA. Pulmonary and hepatic acute phase response was evaluated by Saa3 mRNA real-time quantitative PCR. RESULTS: Inflammation was strongest 1 and 3 days post-exposure, and remained elevated for the two highest doses (i.e., 0.054 and 0.162 mg) 28 days post-exposure (P < 0.001). SB were detected in lung at all doses on post-exposure day 1 (P < 0.001) and remained elevated at the two highest doses until day 28 (P < 0.05). BAL cell DNA SB were elevated relative to controls at least at the highest dose on all post-exposure days (P < 0.05). The level of FPG sensitive sites in lung was increased throughout with significant increases occurring on post-exposure days 1 and 3, in comparison to controls (P < 0.001-0.05). SB in liver were detected on post-exposure days 1 (P < 0.001) and 28 (P < 0.001). Polymorphonuclear (PMN) cell counts in BAL correlated strongly with FPG sensitive sites in lung (r = 0.88, P < 0.001), whereas no such correlation was observed with SB (r = 0.52, P = 0.08). CBNP increased the expression of Saa3 mRNA in lung tissue on day 1 (all doses), 3 (all doses) and 28 (0.054 and 0.162 mg), but not in liver. CONCLUSIONS: Deposition of CBNPs in lung induces inflammatory and genotoxic effects in mouse lung that persist considerably after the initial exposure. Our results demonstrate that CBNPs may cause genotoxicity both in the primary exposed tissue, lung and BAL cells, and in a secondary tissue, the liver.


Asunto(s)
Daño del ADN/efectos de los fármacos , Hígado/patología , Hígado/fisiopatología , Pulmón/patología , Pulmón/fisiología , Nanopartículas/química , Hollín/farmacología , Animales , Líquido del Lavado Bronquioalveolar/citología , Ensayo Cometa , Femenino , Inflamación , Hígado/inmunología , Pulmón/inmunología , Ratones , Ratones Endogámicos C57BL , Exposición Profesional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA