Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Ann Hum Biol ; 51(1): 2377571, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39051547

RESUMEN

BACKGROUND: The haplotypes from Northern, Southern, Eastern, and Western Kazakhstan, analysed for 27 Y-STR loci, have been contributed to the Y-Chromosome STR Haplotype Reference Database, while the genetic profile of Central Kazakhstan remains inadequately explored. AIM: To investigate the genetic diversity of 27 Y-STR loci in the Kazakh populations from Central Kazakhstan. SUBJECTS AND METHODS: A total of 112 unrelated Central Kazakh males were genotyped via the Yfiler Plus kit. Data analysis yielded haplotype and allele frequencies, and forensic parameters. Genetic distances were graphically represented by a multidimensional scaling plot, with genetic linkages further elucidated through Nei's distance dendrograms and Median-joining networks. RESULTS: A total of 102 haplotypes were detected, of which 96 were unique. The haplotype diversity and discrimination capacity were 0.997 and 0.91, respectively. Central Kazakhstan displays a unique cluster in analyses, underscoring its distinct Y-chromosome diversity compared to other Kazakh regions. The analysis of the Naiman tribe, predominantly residing in Central, Southern and Eastern Kazakhstan, revealed three genetic clusters of distinct haplogroups associated with their clans. CONCLUSIONS: The identified haplotypes will enhance the existing reference database for Y-chromosomal studies in Kazakhstan, offering a robust tool for future research in population genetics, forensic science and genetic genealogy.


Asunto(s)
Cromosomas Humanos Y , Haplotipos , Repeticiones de Microsatélite , Polimorfismo Genético , Humanos , Kazajstán , Cromosomas Humanos Y/genética , Masculino , Frecuencia de los Genes
2.
BMC Genomics ; 24(1): 649, 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37891458

RESUMEN

BACKGROUND: The Kazakhs are one of the biggest Turkic-speaking ethnic groups, controlling vast swaths of land from the Altai to the Caspian Sea. In terms of area, Kazakhstan is ranked ninth in the world. Northern, Eastern, and Western Kazakhstan have already been studied in relation to genetic polymorphism 27 Y-STR. However, current information on the genetic polymorphism of the Y-chromosome of Southern Kazakhstan is limited only by 17 Y-STR and no geographical study of other regions has been studied at this variation. RESULTS: The Kazakhstan Y-chromosome Haplotype Reference Database was expanded with 468 Kazakh males from the Zhambyl and Turkestan regions of South Kazakhstan by having their 27 Y-STR loci and 23 Y-SNP markers analyzed. Discrimination capacity (DC = 91.23%), haplotype match probability (HPM = 0.0029) and haplotype diversity (HD = 0.9992) are defined. Most of this Y-chromosome variability is attributed to haplogroups C2a1a1b1-F1756 (2.1%), C2a1a2-M48 (7.3%), C2a1a3-F1918 (33.3%) and C2b1a1a1a-M407 (6%). Median-joining network analysis was applied to understand the relationship between the haplotypes of the three regions. In three genetic layer can be described the position of the populations of the Southern region of Kazakhstan-the geographic Kazakh populations of Kazakhstan, the Kazakh tribal groups, and the people of bordering Asia. CONCLUSION: The Kazakhstan Y-chromosome Haplotype Reference Database was formed for 27 Y-STR loci with a total sample of 1796 samples of Kazakhs from 16 regions of Kazakhstan. The variability of the Y-chromosome of the Kazakhs in a geographical context can be divided into four main clusters-south, north, east, west. At the same time, in the genetic space of tribal groups, the population of southern Kazakhs clusters with tribes from the same region, and genetic proximity is determined with the populations of the Hazaras of Afghanistan and the Mongols of China.


Asunto(s)
Variación Genética , Genética de Población , Masculino , Humanos , Kazajstán , Cromosomas Humanos Y/genética , Repeticiones de Microsatélite , Polimorfismo Genético , Haplotipos
3.
Ann Hum Biol ; 50(1): 48-51, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36650935

RESUMEN

BACKGROUND: The establishment of a national haplotype database is important for forensic and genetic applications and requires studying genetic polymorphisms at Y-STR sites. However, the genetic structure of the Eastern Kazakhstan population is poorly characterised. AIM: To investigate the genetic polymorphisms of 27 Y-STR loci in the Kazakh population from Eastern Kazakhstan and analyse the population genetic relationships of the Eastern Kazakhs with other populations. SUBJECTS AND METHODS: The Yfiler Plus kit was utilised to genotype 246 healthy, unrelated males from Eastern Kazakhstan. Based on the raw data, haplotype and allele frequencies along with forensic parameters were calculated, and an MDS plot was constructed. RESULTS: A total of 207 haplotypes were detected, of which 186 were unique. The haplotype diversity and discrimination capacity were 0.997 and 0.841, respectively. Population comparisons showed that Eastern Kazakhs have close genetic relationships with Kazakhs from Xinjiang, China. At the same time, a difference was found between the studied population and the previous one in the same part of Kazakhstan. CONCLUSIONS: The obtained haplotypes will help to expand the Kazakhstan Y-chromosome reference database and will be useful for future genetic research and forensic applications.


Asunto(s)
Cromosomas Humanos Y , Repeticiones de Microsatélite , Masculino , Humanos , Kazajstán , Repeticiones de Microsatélite/genética , Cromosomas Humanos Y/genética , Polimorfismo Genético , Frecuencia de los Genes , Genética de Población , Haplotipos , China
4.
Nature ; 538(7624): 238-242, 2016 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-27654910

RESUMEN

High-coverage whole-genome sequence studies have so far focused on a limited number of geographically restricted populations, or been targeted at specific diseases, such as cancer. Nevertheless, the availability of high-resolution genomic data has led to the development of new methodologies for inferring population history and refuelled the debate on the mutation rate in humans. Here we present the Estonian Biocentre Human Genome Diversity Panel (EGDP), a dataset of 483 high-coverage human genomes from 148 populations worldwide, including 379 new genomes from 125 populations, which we group into diversity and selection sets. We analyse this dataset to refine estimates of continent-wide patterns of heterozygosity, long- and short-distance gene flow, archaic admixture, and changes in effective population size through time as well as for signals of positive or balancing selection. We find a genetic signature in present-day Papuans that suggests that at least 2% of their genome originates from an early and largely extinct expansion of anatomically modern humans (AMHs) out of Africa. Together with evidence from the western Asian fossil record, and admixture between AMHs and Neanderthals predating the main Eurasian expansion, our results contribute to the mounting evidence for the presence of AMHs out of Africa earlier than 75,000 years ago.


Asunto(s)
Genoma Humano/genética , Genómica , Migración Humana/historia , Grupos Raciales/genética , África/etnología , Animales , Asia , Conjuntos de Datos como Asunto , Estonia , Europa (Continente) , Fósiles , Flujo Génico , Genética de Población , Heterocigoto , Historia Antigua , Humanos , Nativos de Hawái y Otras Islas del Pacífico/genética , Hombre de Neandertal/genética , Nueva Guinea , Dinámica Poblacional
5.
Ann Hum Biol ; 49(1): 87-89, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35132894

RESUMEN

BACKGROUND: Previous studies of the genetic polymorphism of the Y-chromosome of Kazakhs were focussed on the Eastern, Central, Southern, and Western regions of Kazakhstan. In addition, many of these studies were limited to 17 Y-STR loci from the Yfiler. AIM: To enrich the existing Kazakhstan Y-chromosome Haplotype Reference Database from the Northern Kazakh population data by a wide set of 27 Y-STR and investigate the population genetic relationships with previously published data. SUBJECTS AND METHODS: Twenty-seven Y-STR loci from the Yfiler Plus PCR Amplification Kit were analysed in 382 healthy unrelated Kazakh males from Northern Kazakhstan. Genetic polymorphism was analysed using Arlequin software. RESULTS: A total of 326 distinct haplotypes of the 27 Y-STR loci were observed in 382 individuals. The discrimination capacity (0.9982) and haplotype diversity (0.8534) were computed. A total of 168 alleles at single-copy loci were observed and their frequencies ranged from 0.003-0.843. The pairwise genetic distance (RST) showed that the Northern Kazakh population is genetically distinct from the Chinese Kazakh population. CONCLUSIONS: Genetic polymorphism shows that the potential value of 27 Y-STR loci for forensic casework in the Northern Kazakh population and the current findings might be beneficial for paternal lineages in the study of population genetics.


Asunto(s)
Cromosomas Humanos Y , Repeticiones de Microsatélite , China , Cromosomas Humanos Y/genética , Genética de Población , Haplotipos , Humanos , Kazajstán , Masculino , Repeticiones de Microsatélite/genética , Polimorfismo Genético
6.
J Hum Genet ; 66(7): 707-716, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33510364

RESUMEN

Western Kazakhstan is populated by three clans totaling 2 million people. Since the clans are patrilineal, the Y-chromosome is the most informative genetic system for tracing their origin. We genotyped 40 Y-SNP and 17 Y-STR markers in 330 Western Kazakhs. High phylogenetic resolution within haplogroup C2a1a2-M48 was achieved by using additional SNPs. Three lines of evidence indicate that the Alimuly and Baiuly clans (but not the Zhetiru clan) have a common founder placed 700 ± 200 years back by the STR data and 500 ± 200 years back by the sequencing data. This supports traditional genealogy claims about the descent of these clans from Emir Alau, who lived 650 years ago and whose lineage might be carried by two-thirds of Western Kazakhs. There is accumulation of specific haplogroups in the subclans representing other lineages, confirming that the clan structure corresponds with the paternal genetic structure of the steppe population.


Asunto(s)
Cromosomas Humanos Y/genética , Genealogía y Heráldica , Haplotipos/genética , Filogenia , Efecto Fundador , Genotipo , Humanos , Kazajstán/epidemiología , Masculino , Polimorfismo de Nucleótido Simple/genética
7.
BMC Genet ; 21(Suppl 1): 87, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-33092538

RESUMEN

BACKGROUND: The majority of the Kazakhs from South Kazakhstan belongs to the 12 clans of the Senior Zhuz. According to traditional genealogy, nine of these clans have a common ancestor and constitute the Uissun tribe. There are three main hypotheses of the clans' origin, namely, origin from early Wusuns, from Niru'un Mongols, or from Darligin Mongols. We genotyped 490 samples of South Kazakhs by 35 Y-chromosomal SNPs (single nucleotide polymorphism) and 17 STRs (short tandem repeat). Additionally, 133 samples from citizen science projects were included into the study. RESULTS: We found that three Uissun clans have unique Y-chromosomal profiles, but the remaining six Uissun clans and one non-Uissun clan share a common paternal gene pool. They share a high frequency (> 40%) of the C2*-ST haplogroup (marked by the SNP F3796), which is associated with the early Niru'un Mongols. Phylogenetic analysis of this haplogroup carried out on 743 individuals from 25 populations of Eurasia has revealed a set of haplotype clusters, three of which contain the Uissun haplotypes. The demographic expansion of these clusters dates back to the 13-fourteenth century, coinciding with the time of the Uissun's ancestor Maiky-biy known from historical sources. In addition, it coincides with the expansion period of the Mongol Empire in the Late Middle Ages. A comparison of the results with published aDNA (ancient deoxyribonucleic acid) data and modern Y haplogroups frequencies suggest an origin of Uissuns from Niru'un Mongols rather than from Wusuns or Darligin Mongols. CONCLUSIONS: The Y-chromosomal variation in South Kazakh clans indicates their common origin in 13th-14th centuries AD, in agreement with the traditional genealogy. Though genetically there were at least three ancestral lineages instead of the traditional single ancestor. The majority of the Y-chromosomal lineages of South Kazakhstan was brought by the migration of the population related to the medieval Niru'un Mongols.


Asunto(s)
Pueblo Asiatico/genética , Cromosomas Humanos Y/genética , Genética de Población , Etnicidad/genética , Pool de Genes , Genotipo , Haplotipos , Humanos , Kazajstán , Masculino , Repeticiones de Microsatélite , Mongolia , Filogenia , Polimorfismo de Nucleótido Simple
8.
Int J Legal Med ; 133(4): 1029-1032, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29796706

RESUMEN

To improve available databases of forensic interest, all Y-STR haplotypes from Kazakh population were presented in this study. The reference database accumulated almost 3650 samples from academic and citizen science. Additionally, 27 Y-STR from Yfiler Plus System were first analyzed in 300 males from Kazakh (Qazaq) populations residing in Kazakhstan. The data is available in the YHDR under accession numbers YA004316 and YA004322. A total of 270 unique haplotypes were observed. Discrimination capacity was 90%. Obtained Y-STR haplotypes exhibited a high intra-population diversity. Analysis of pairwise genetic distances showed lowest RST values from Uighur and Mongolian populations.


Asunto(s)
Cromosomas Humanos Y/genética , Dermatoglifia del ADN/métodos , Bases de Datos Genéticas , Haplotipos/genética , Repeticiones de Microsatélite/genética , ADN/análisis , Etnicidad/genética , Variación Genética , Humanos , Kazajstán , Masculino
9.
Data Brief ; 53: 110160, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38384307

RESUMEN

This study presents a comprehensive analysis of 23 Y-STR data for the Merkit clan, a subgroup within the Kerey tribe of the Kazakh people. A total of 64 complete haplotypes were generated using the PowerPlex Y23 System. The data obtained using 23 Y-STR markers has been submitted to the Y Chromosome Haplotype Reference Database (YHRD) at yhrd.org, which will significantly enhance the forensic database for the Kazakh population in Kazakhstan. The research focuses on the distribution of haplotypes within the clan and their genealogical lines, which were visualized using a Median-joining network and Multidimensional scaling plot. The study identifies four distinct haplogroup clusters, revealing important insights into the genetic makeup and historical lineage of the Merkits. This dataset not only enriches our understanding of Kazakh genetic structure but also holds significant value for anthropological and population genetic research, as well as for forensic genetics. This work bridges a notable gap in genetic research on the Merkit clan, contributing to a deeper understanding of Central Asian nomadic tribes.

10.
PLoS One ; 19(9): e0309080, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39231100

RESUMEN

The Kerey is one of the prominent Kazakh tribes and has long been a subject of ethnographic scrutiny, with a lack of consensus on its origin and traditional genealogy. Their historical significance, intertwined with the emergence of the empire established by Genghis Khan, necessitates a comprehensive understanding of their genetic history. This study focuses on unraveling the genetic heritage of the Kerey tribe. We conducted a comprehensive analysis of Y-chromosome data from genetic genealogy as citizen science and genetic screening of 23 Y-STRs and 37 Y-SNPs on 207 males from the Kerey tribe within academic science. Our results reveal two prevalent phylogenetic lineages within the C2a1a3a-F3796 haplogroup, also known as the C2*-Star Cluster (C2*-ST), which is one of the founding paternal lineages of the ancient Niru'un clan of the Mongols: C2-FT411734 and C2-FT224144, corresponding to the Abak and Ashamaily clans. While indicating a common male ancestry for them, our findings challenge the notion that they are full siblings. Additionally, genetic diversity analysis of the Y-chromosomes in the Kerey tribe and Kazakhs confirms their kinship with the Uissun tribe but refutes the claim of the Abak clan's progenitor originating from this tribe. Furthermore, genetic evidence fails to support popular historical and ethnographic hypotheses regarding the Kerey tribe's kinship with the Uak, Sirgeli, Adai, Törtkara, Karakerey, and Kereyit Kazakh tribes. The absence of a genetic paternal connection with the Kereyt tribe raises doubts about the genealogical link between the Kerey tribe and the stepfather of Genghis Khan.


Asunto(s)
Cromosomas Humanos Y , Haplotipos , Filogenia , Cromosomas Humanos Y/genética , Humanos , Masculino , Linaje , Polimorfismo de Nucleótido Simple , Kazajstán , Repeticiones de Microsatélite/genética , Etnicidad/genética , Genealogía y Heráldica
11.
Croat Med J ; 54(1): 17-24, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23444242

RESUMEN

AIM: To study the genetic relationship of Kazakhs from East Kazakhstan to other Eurasian populations by examining paternal and maternal DNA lineages. METHODS: Whole blood samples were collected in 2010 from 160 unrelated healthy Kazakhs residing in East Kazakhstan. Genomic DNA was extracted with Wizard genomic DNA Purification Kit. Nucleotide sequence of hypervariable segment I of mitochondrial DNA (mtDNA) was determined and analyzed. Seventeen Y-short tandem repeat (STR) loci were studied in 67 samples with the AmpFiSTR Y-filer PCR Amplification Kit. In addition, mtDNA data for 2701 individuals and Y-STR data for 677 individuals were retrieved from the literature for comparison. RESULTS: There was a high degree of genetic differentiation on the level of mitochondrial DNA. The majority of maternal lineages belonged to haplogroups common in Central Asia. In contrast, Y-STR data showed very low genetic diversity, with the relative frequency of the predominant haplotype of 0.612. CONCLUSION: The results revealed different migration patterns in the population sample, showing there had been more migration among women. mtDNA genetic diversity in this population was equivalent to that in other Central Asian populations. Genetic evidence suggests the existence of a single paternal founder lineage in the population of East Kazakhstan, which is consistent with verbal genealogical data of the local tribes.


Asunto(s)
Pueblo Asiatico/genética , Cromosomas Humanos Y/genética , ADN Mitocondrial/genética , Genética de Población , Adulto , Femenino , Pool de Genes , Variación Genética , Haplotipos , Humanos , Kazajstán , Repeticiones de Microsatélite , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa , Adulto Joven
12.
Genes (Basel) ; 13(10)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36292661

RESUMEN

In the past two decades, studies of Y chromosomal single nucleotide polymorphisms (Y-SNPs) and short tandem repeats (Y-STRs) have shed light on the demographic history of Central Asia, the heartland of Eurasia. However, complex patterns of migration and admixture have complicated population genetic studies in Central Asia. Here, we sequenced and analyzed the Y-chromosomes of 187 male individuals from Kazakh, Kyrgyz, Uzbek, Karakalpak, Hazara, Karluk, Tajik, Uyghur, Dungan, and Turkmen populations. High diversity and admixture from peripheral areas of Eurasia were observed among the paternal gene pool of these populations. This general pattern can be largely attributed to the activities of ancient people in four periods, including the Neolithic farmers, Indo-Europeans, Turks, and Mongols. Most importantly, we detected the consistent expansion of many minor lineages over the past thousand years, which may correspond directly to the formation of modern populations in these regions. The newly discovered sub-lineages and variants provide a basis for further studies of the contributions of minor lineages to the formation of modern populations in Central Asia.


Asunto(s)
Cromosomas Humanos Y , Genética de Población , Humanos , Masculino , Cromosomas Humanos Y/genética , Filogenia , Haplotipos , Asia
13.
Genes (Basel) ; 13(10)2022 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-36292713

RESUMEN

Data on the genetic polymorphism of 27 Y-STR in Kazakhs of the Junior Zhuz has been presented and analyzed in relation to forensic features. A total of 464 representatives of the Western Kazakh tribes of Kazakhstan (Western Kazakhs, n = 405) and Uzbekistan (Karakalpakstan Kazakhs, n = 59) were examined by the Yfiler Plus set. The data are available in the YHRD under accession numbers YA006010 and YA006009. Genetic analysis (AMOVA and MDS) did not show significant differences between the two groups (Kazakhstan and Karakalpakstan Kazakhs) in terms of Y-chromosome diversity. Both groups are characterized by haplogroup C2a1a2 as a founder effect, which dominated two of the three tribes: Alimuly (67%), Baiuly (74.6%), and Zhetiru (25.8%). At the same time, the phylogenetic network for each tribe found its own clusters within C2a1a2. Western Kazakhs and Karakalpakstan Kazakhs present high values of unique haplotypes (84.44% and 96.61%), discrimination capacity (90.37% and 98.30%), and haplotype diversity (0.9991 and 0.9994). A set of 27 Y-STR loci distinguishes closely related individuals within the Western Kazakh tribes quite well. It is suitable for forensic application, and is also optimal for population genetics studies.


Asunto(s)
Cromosomas Humanos Y , Repeticiones de Microsatélite , Humanos , Cromosomas Humanos Y/genética , Genética de Población , Filogenia , Kazajstán , Uzbekistán , Polimorfismo Genético , China
14.
PLoS One ; 17(11): e0277771, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36445929

RESUMEN

As a historical nomadic group in Central Asia, Kazaks have mainly inhabited the steppe zone from the Altay Mountains in the East to the Caspian Sea in the West. Fine scale characterization of the genetic profile and population structure of Kazaks would be invaluable for understanding their population history and modeling prehistoric human expansions across the Eurasian steppes. With this mind, we characterized the maternal lineages of 200 Kazaks from Jetisuu at mitochondrial genome level. Our results reveal that Jetisuu Kazaks have unique mtDNA haplotypes including those belonging to the basal branches of both West Eurasian (R0, H, HV) and East Eurasian (A, B, C, D) lineages. The great diversity observed in their maternal lineages may reflect pivotal geographic location of Kazaks in Eurasia and implies a complex history for this population. Comparative analyses of mitochondrial genomes of human populations in Central Eurasia reveal a common maternal genetic ancestry for Turko-Mongolian speakers and their expansion being responsible for the presence of East Eurasian maternal lineages in Central Eurasia. Our analyses further indicate maternal genetic affinity between the Sherpas from the Tibetan Plateau with the Turko-Mongolian speakers.


Asunto(s)
Genoma Mitocondrial , Humanos , Animales , Solución de Problemas , Etnicidad , ADN Mitocondrial/genética , Gerbillinae , China
15.
Sci Rep ; 7(1): 3085, 2017 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-28596519

RESUMEN

We have analyzed Y-chromosomal variation in populations from Transoxiana, a historical region covering the southwestern part of Central Asia. We studied 780 samples from 10 regional populations of Kazakhs, Uzbeks, Turkmens, Dungans, and Karakalpaks using 35 SNP and 17 STR markers. Analysis of haplogroup frequencies using multidimensional scaling and principal component plots, supported by an analysis of molecular variance, showed that the geographic landscape of Transoxiana, despite its distinctiveness and diversity (deserts, fertile river basins, foothills and plains) had no strong influence on the genetic landscape. The main factor structuring the gene pool was the mode of subsistence: settled agriculture or nomadic pastoralism. Investigation of STR-based clusters of haplotypes and their ages revealed that cultural and demic expansions of Transoxiana were not closely connected with each other. The Arab cultural expansion introduced Islam to the region but did not leave a significant mark on the pool of paternal lineages. The Mongol expansion, in contrast, had enormous demic success, but did not impact cultural elements like language and religion. The genealogy of Muslim missionaries within the settled agricultural communities of Transoxiana was based on spiritual succession passed from teacher to disciple. However, among Transoxianan nomads, spiritual and biological succession became merged.


Asunto(s)
Cultura , Genética de Población , Asia Central , Cromosomas Humanos Y , Análisis por Conglomerados , Geografía , Haplotipos , Migración Humana , Humanos , Herencia Paterna , Polimorfismo de Nucleótido Simple , Grupos de Población/genética
16.
PLoS One ; 10(4): e0122968, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25849548

RESUMEN

Y-chromosomal haplogroup G1 is a minor component of the overall gene pool of South-West and Central Asia but reaches up to 80% frequency in some populations scattered within this area. We have genotyped the G1-defining marker M285 in 27 Eurasian populations (n= 5,346), analyzed 367 M285-positive samples using 17 Y-STRs, and sequenced ~11 Mb of the Y-chromosome in 20 of these samples to an average coverage of 67X. This allowed detailed phylogenetic reconstruction. We identified five branches, all with high geographical specificity: G1-L1323 in Kazakhs, the closely related G1-GG1 in Mongols, G1-GG265 in Armenians and its distant brother clade G1-GG162 in Bashkirs, and G1-GG362 in West Indians. The haplotype diversity, which decreased from West Iran to Central Asia, allows us to hypothesize that this rare haplogroup could have been carried by the expansion of Iranic speakers northwards to the Eurasian steppe and via founder effects became a predominant genetic component of some populations, including the Argyn tribe of the Kazakhs. The remarkable agreement between genetic and genealogical trees of Argyns allowed us to calibrate the molecular clock using a historical date (1405 AD) of the most recent common genealogical ancestor. The mutation rate for Y-chromosomal sequence data obtained was 0.78×10-9 per bp per year, falling within the range of published rates. The mutation rate for Y-chromosomal STRs was 0.0022 per locus per generation, very close to the so-called genealogical rate. The "clan-based" approach to estimating the mutation rate provides a third, middle way between direct farther-to-son comparisons and using archeologically known migrations, whose dates are subject to revision and of uncertain relationship to genetic events.


Asunto(s)
Cromosomas Humanos Y/genética , Frecuencia de los Genes , Haplotipos , Migración Humana , Humanos , Irán , Lenguaje , Repeticiones de Microsatélite , Filogenia , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA