Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Hered ; 106 Suppl 1: 478-90, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26245783

RESUMEN

Species of restricted distribution are considered more vulnerable to extinction because of low levels of genetic variation relative to widespread taxa. Species of the subgenus Cynomys are an excellent system to compare genetic variation and degree of genetic structure in contrasting geographic distributions. We assessed levels of genetic variation, genetic structure, and genetic differentiation in widespread Cynomys ludovicianus and restricted C. mexicanus using 1997bp from the cytochrome b and control region (n = 223 C. ludovicianus; 77 C. mexicanus), and 10 nuclear microsatellite loci (n = 207 and 78, respectively). Genetic variation for both species was high, and genetic structure in the widespread species was higher than in the restricted species. C. mexicanus showed values of genetic variation, genetic structure, and genetic differentiation similar to C. ludovicianus at smaller geographic scales. Results suggest the presence of at least 2 historical refuges for C. ludovicianus and that the Sierra Madre Occidental represents a barrier to gene flow. Chihuahua and New Mexico possess high levels of genetic diversity and should be protected, while Sonora should be treated as an independent management unit. For C. mexicanus, connectivity among colonies is very important and habitat fragmentation and habitat loss should be mitigated to maintain gene flow.


Asunto(s)
Variación Genética , Genética de Población , Sciuridae/genética , Animales , Conservación de los Recursos Naturales , ADN Mitocondrial/genética , Flujo Génico , Frecuencia de los Genes , Pradera , México , Repeticiones de Microsatélite , Modelos Genéticos , New Mexico , Sciuridae/clasificación , Análisis de Secuencia de ADN
2.
Mol Ecol ; 22(9): 2441-55, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23452304

RESUMEN

Introduced diseases can cause dramatic declines in-and even the loss of-natural populations. Extirpations may be followed by low recolonization rates, leading to inbreeding and a loss of genetic variation, with consequences on population viability. Conversely, extirpations may create vacant habitat patches that individuals from multiple source populations can colonize, potentially leading to an influx of variation. We tested these alternative hypotheses by sampling 15 colonies in a prairie dog metapopulation during 7 years that encompassed an outbreak of sylvatic plague, providing the opportunity to monitor genetic diversity before, during and after the outbreak. Analysis of nine microsatellite loci revealed that within the metapopulation, there was no change in diversity. However, within extirpated colonies, patterns varied: In half of the colonies, allelic richness after recovery was less than the preplague conditions, and in the other half, richness was greater than the preplague conditions. Finally, analysis of variation within individuals revealed that prairie dogs present in recolonized colonies had higher heterozygosity than those present before plague. We confirmed plague survivorship in six founders; these individuals had significantly higher heterozygosity than expected by chance. Collectively, our results suggest that high immigration rates can maintain genetic variation at a regional scale despite simultaneous extirpations in spatially proximate populations. Thus, virulent diseases may increase genetic diversity of host populations by creating vacant habitats that allow an influx of genetic diversity. Furthermore, even highly virulent diseases may not eliminate individuals randomly; rather, they may selectively remove the most inbred individuals.


Asunto(s)
Brotes de Enfermedades/veterinaria , Variación Genética , Peste/veterinaria , Sciuridae/genética , Animales , Ecosistema , Sitios Genéticos , Genética de Población , Endogamia , Repeticiones de Microsatélite , Sciuridae/microbiología
3.
Front Ecol Environ ; 10(2): 75-82, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23482675

RESUMEN

Since the identification and imprisonment of "Typhoid Mary," a woman who infected at least 47 people with typhoid in the early 1900s, epidemiologists have recognized that 'superspreading' hosts play a key role in disease epidemics. Such variability in transmission also exists among species within a community (amplification hosts) and among habitat patches across a landscape (disease 'hotspots'), underscoring the need for an integrative framework for studying transmission heterogeneity. Here, we synthesize literature on human, plant, and animal diseases to evaluate the relative contributions of host, pathogen, and environmental factors in driving transmission heterogeneity across hosts and space. We show that host and spatial heterogeneity are closely linked and that quantitatively assessing the contribution of infectious individuals, species, or environmental patches to overall transmission can aid management strategies. We conclude by posing hypotheses regarding how pathogen natural history influences transmission heterogeneity and highlight emerging frontiers in the study of transmission heterogeneity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA