Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Biol Chem ; 292(51): 20834-20844, 2017 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-29097553

RESUMEN

Clathrins are cytoplasmic proteins that play essential roles in endocytosis and other membrane traffic pathways. Upon recruitment to intracellular membranes, the canonical clathrin triskelion assembles into a polyhedral protein coat that facilitates vesicle formation and captures cargo molecules for transport. The triskelion is formed by trimerization of three clathrin heavy-chain subunits. Most vertebrates have two isoforms of clathrin heavy chains, CHC17 and CHC22, generating two clathrins with distinct cellular functions. CHC17 forms vesicles at the plasma membrane for receptor-mediated endocytosis and at the trans-Golgi network for organelle biogenesis. CHC22 plays a key role in intracellular targeting of the insulin-regulated glucose transporter 4 (GLUT4), accumulates at the site of GLUT4 sequestration during insulin resistance, and has also been implicated in neuronal development. Here, we demonstrate that CHC22 and CHC17 share morphological features, in that CHC22 forms a triskelion and latticed vesicle coats. However, cellular CHC22-coated vesicles were distinct from those formed by CHC17. The CHC22 coat was more stable to pH change and was not removed by the enzyme complex that disassembles the CHC17 coat. Moreover, the two clathrins were differentially recruited to membranes by adaptors, and CHC22 did not support vesicle formation or transferrin endocytosis at the plasma membrane in the presence or absence of CHC17. Our findings provide biochemical evidence for separate regulation and distinct functional niches for CHC17 and CHC22 in human cells. Furthermore, the greater stability of the CHC22 coat relative to the CHC17 coat may be relevant to its excessive accumulation with GLUT4 during insulin resistance.


Asunto(s)
Cadenas Pesadas de Clatrina/química , Cadenas Pesadas de Clatrina/metabolismo , Secuencia de Aminoácidos , Cadenas Pesadas de Clatrina/genética , Vesículas Cubiertas por Clatrina/metabolismo , Vesículas Cubiertas por Clatrina/ultraestructura , Endocitosis , Transportador de Glucosa de Tipo 4/metabolismo , Células HeLa , Humanos , Resistencia a la Insulina , ARN Interferente Pequeño/genética , Homología de Secuencia de Aminoácido , Transferrina/metabolismo
2.
J Cell Biol ; 219(1)2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31863584

RESUMEN

Glucose transporter 4 (GLUT4) is sequestered inside muscle and fat and then released by vesicle traffic to the cell surface in response to postprandial insulin for blood glucose clearance. Here, we map the biogenesis of this GLUT4 traffic pathway in humans, which involves clathrin isoform CHC22. We observe that GLUT4 transits through the early secretory pathway more slowly than the constitutively secreted GLUT1 transporter and localize CHC22 to the ER-to-Golgi intermediate compartment (ERGIC). CHC22 functions in transport from the ERGIC, as demonstrated by an essential role in forming the replication vacuole of Legionella pneumophila bacteria, which requires ERGIC-derived membrane. CHC22 complexes with ERGIC tether p115, GLUT4, and sortilin, and downregulation of either p115 or CHC22, but not GM130 or sortilin, abrogates insulin-responsive GLUT4 release. This indicates that CHC22 traffic initiates human GLUT4 sequestration from the ERGIC and defines a role for CHC22 in addition to retrograde sorting of GLUT4 after endocytic recapture, enhancing pathways for GLUT4 sequestration in humans relative to mice, which lack CHC22.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Vías Biosintéticas , Cadenas Pesadas de Clatrina/metabolismo , Clatrina/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Células HeLa , Humanos , Transporte de Proteínas , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo
3.
Diabetes ; 65(6): 1577-89, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27207531

RESUMEN

Insulin controls glucose uptake into adipose and muscle cells by regulating the amount of GLUT4 in the plasma membrane. The effect of insulin is to promote the translocation of intracellular GLUT4 to the plasma membrane. The small Rab GTPase, Rab10, is required for insulin-stimulated GLUT4 translocation in cultured 3T3-L1 adipocytes. Here we demonstrate that both insulin-stimulated glucose uptake and GLUT4 translocation to the plasma membrane are reduced by about half in adipocytes from adipose-specific Rab10 knockout (KO) mice. These data demonstrate that the full effect of insulin on adipose glucose uptake is the integrated effect of Rab10-dependent and Rab10-independent pathways, establishing a divergence in insulin signal transduction to the regulation of GLUT4 trafficking. In adipose-specific Rab10 KO female mice, the partial inhibition of stimulated glucose uptake in adipocytes induces insulin resistance independent of diet challenge. During euglycemic-hyperinsulinemic clamp, there is no suppression of hepatic glucose production despite normal insulin suppression of plasma free fatty acids. The impact of incomplete disruption of stimulated adipocyte GLUT4 translocation on whole-body glucose homeostasis is driven by a near complete failure of insulin to suppress hepatic glucose production rather than a significant inhibition in muscle glucose uptake. These data underscore the physiological significance of the precise control of insulin-regulated trafficking in adipocytes.


Asunto(s)
Adipocitos/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Resistencia a la Insulina , Insulina/metabolismo , Hígado/metabolismo , Proteínas de Unión al GTP rab/deficiencia , Células 3T3-L1 , Animales , Membrana Celular/metabolismo , Femenino , Glucosa/biosíntesis , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/metabolismo , Transporte de Proteínas , Transducción de Señal
4.
Mol Biol Cell ; 24(16): 2544-57, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23804653

RESUMEN

Adipocyte glucose uptake in response to insulin is essential for physiological glucose homeostasis: stimulation of adipocytes with insulin results in insertion of the glucose transporter GLUT4 into the plasma membrane and subsequent glucose uptake. Here we establish that RAB10 and RAB14 are key regulators of GLUT4 trafficking that function at independent, sequential steps of GLUT4 translocation. RAB14 functions upstream of RAB10 in the sorting of GLUT4 to the specialized transport vesicles that ferry GLUT4 to the plasma membrane. RAB10 and its GTPase-activating protein (GAP) AS160 comprise the principal signaling module downstream of insulin receptor activation that regulates the accumulation of GLUT4 transport vesicles at the plasma membrane. Although both RAB10 and RAB14 are regulated by the GAP activity of AS160 in vitro, only RAB10 is under the control of AS160 in vivo. Insulin regulation of the pool of RAB10 required for GLUT4 translocation occurs through regulation of AS160, since activation of RAB10 by DENND4C, its GTP exchange factor, does not require insulin stimulation.


Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Insulina/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Células 3T3 , Adipocitos/metabolismo , Animales , Células CHO , Línea Celular , Cricetulus , Vesículas Citoplasmáticas/metabolismo , Electroporación , Proteínas Activadoras de GTPasa/biosíntesis , Transportador de Glucosa de Tipo 4/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Ratones , Proteínas Munc18/genética , Proteínas Munc18/metabolismo , Transporte de Proteínas , Interferencia de ARN , ARN Interferente Pequeño , Transducción de Señal , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP ral/genética , Proteínas de Unión al GTP ral/metabolismo
5.
Neuron ; 72(1): 72-85, 2011 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-21982370

RESUMEN

Autism spectrum disorders such as Rett syndrome (RTT) have been hypothesized to arise from defects in experience-dependent synapse maturation. RTT is caused by mutations in MECP2, a nuclear protein that becomes phosphorylated at S421 in response to neuronal activation. We show here that disruption of MeCP2 S421 phosphorylation in vivo results in defects in synapse development and behavior, implicating activity-dependent regulation of MeCP2 in brain development and RTT. We investigated the mechanism by which S421 phosphorylation regulates MeCP2 function and show by chromatin immunoprecipitation-sequencing that this modification occurs on MeCP2 bound across the genome. The phosphorylation of MeCP2 S421 appears not to regulate the expression of specific genes; rather, MeCP2 functions as a histone-like factor whose phosphorylation may facilitate a genome-wide response of chromatin to neuronal activity during nervous system development. We propose that RTT results in part from a loss of this experience-dependent chromatin remodeling.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Conducta Exploratoria/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Genoma/fisiología , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/fisiología , Animales , Encéfalo/metabolismo , Encéfalo/fisiología , Cromatina/metabolismo , Inmunoprecipitación de Cromatina/métodos , Dendritas/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Técnicas de Sustitución del Gen/métodos , Proteína 2 de Unión a Metil-CpG/metabolismo , Ratones , Ratones Endogámicos C57BL , Neuronas/citología , Neuronas/metabolismo , Neuronas/fisiología , Fosforilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA