Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Respir Res ; 24(1): 226, 2023 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-37742015

RESUMEN

BACKGROUND: Small airways disease plays a key role in the pathogenesis of chronic obstructive pulmonary disease (COPD) and is a major cause of obstruction; therefore, it is a critical pharmacotherapy target. This study evaluated lung deposition of two inhaled corticosteroid (ICS)/long-acting ß2-agonist/long-acting muscarinic antagonist single-inhaler triple therapies using in silico functional respiratory imaging (FRI). Deposition was assessed using real-world inhalation profiles simulating everyday use where optimal inhalation may be compromised. METHODS: Three-dimensional airway models were produced from 20 patients with moderate-to-very severe COPD. Total, central, and regional small airways deposition as a percentage of delivered dose of budesonide/glycopyrronium/formoterol fumarate dihydrate (BGF) 160/7.2/5 µg per actuation and fluticasone furoate/umeclidinium/vilanterol (FF/UM/VI) 100/62.5/25 µg were evaluated using in silico FRI based on in vitro aerodynamic particle size distributions of each device. Simulations were performed using multiple inhalation profiles of varying durations and flow rates representing patterns suited for a pressurized metered-dose inhaler or dry-powder inhaler (four for BGF, two for FF/UM/VI, with one common profile). For the common profile, deposition for BGF versus FF/UM/VI was compared post-hoc using paired t-tests. RESULTS: Across inhalation profiles, mean total lung deposition was consistently higher with BGF (47.0-54.1%) versus FF/UM/VI (20.8-22.7%) and for each treatment component, with greater deposition for BGF also seen in the central large airways. Mean regional small airways deposition was also greater across inhalation profiles with BGF (16.9-23.6%) versus FF/UM/VI (6.8-8.7%) and for each treatment component. For the common profile, total, central, and regional small airways deposition were significantly greater for BGF versus FF/UM/VI (nominal p < 0.001), overall and for treatment components; notably, regional small airways deposition of the ICS components was approximately five-fold greater with budesonide versus fluticasone furoate (16.1% vs. 3.3%). CONCLUSIONS: BGF was associated with greater total, central, and small airways deposition for all components versus FF/UM/VI. Importantly, using an identical inhalation profile, there was an approximately five-fold difference in small airways deposition for the ICS components, with only a small percentage of the ICS from FF/UM/VI reaching the small airways. Further research is needed to understand if the enhanced delivery of BGF translates to clinical benefits.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Humanos , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Fluticasona , Budesonida , Inhaladores de Polvo Seco , Pulmón/diagnóstico por imagen
2.
Int J Mol Sci ; 23(17)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36076992

RESUMEN

We compared the performance and levofloxacin (Quinsair) lung deposition of three nebulisers commonly used in CF (I-Neb Advance, eFlow rapid, and LC Plus) with the approved nebuliser Zirela. The delivered dose, delivery rate, and aerosol particle size distribution (APSD) for each device were determined using the methods described in the Pharmacopeia. High-resolution computed tomography scans obtained from seven adult patients with mild CF were used to generate computer-aided, three-dimensional models of their airway tree to assess lung deposition using functional respiratory imaging (FRI). The eFlow rapid and the LC Plus showed poor delivery efficiencies due to their high residual volumes. The I-Neb, which only delivers aerosols during the inspiratory phase, achieved the highest aerosol delivery efficiency. However, the I-Neb showed the largest particle size and lowest delivery rate (2.9 mg/min), which were respectively associated with a high extrathoracic deposition and extremely long nebulisation times (>20 min). Zirela showed the best performance considering delivery efficiency (159.6 mg out of a nominal dose of 240 mg), delivery rate (43.5 mg/min), and lung deposition (20% of the nominal dose), requiring less than 5 min to deliver a full dose of levofloxacin. The present study supports the use of drug-specific nebulisers and discourages the off-label use of general-purpose devices with the present levofloxacin formulation since subtherapeutic lung doses and long nebulisation times may compromise treatment efficacy and adherence.


Asunto(s)
Fibrosis Quística , Administración por Inhalación , Adulto , Fibrosis Quística/complicaciones , Humanos , Levofloxacino , Pulmón , Nebulizadores y Vaporizadores , Aerosoles y Gotitas Respiratorias
3.
Langmuir ; 35(21): 7060-7065, 2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-31050441

RESUMEN

Understanding the behavior of sessile drops can be rewarding in many applications while also fostering progress in the rapidly evolving field of capillarity and wetting. Our experiments reveal that two evaporating sessile drops on a solid substrate do attract even if, unlike the binary-liquid drops recently studied in the literature [Cira et al., Nature, 2015], they are made of the same pure liquid. Several perfectly wetting liquids of different volatilities are tested to unveil and quantify the mechanisms enabling droplets to communicate. While all recent works focusing on the topic consider vapor-mediated interactions only, we here identify not less than three substrate-mediated forces, important for not too heat-conducting substrates (e.g. glass) and driven by the thermal Marangoni effect (favoring droplet motion toward colder regions) and by evaporation-induced variations of the apparent contact angles (acting similarly to a wettability gradient). In addition to an attractive mechanism and a (generally weaker) repelling one, the third effect acts on each droplet individually due to the self-centering cold spot it induces in the substrate. Interestingly, in the force balance used to rationalize our results, this "cold-trap resistance" enters as an effective drag force opposing any motion, like the viscous drag does. The interaction mechanisms described here could hopefully open new directions of research about thermal effects as a mean of self-organizing evaporating/condensing liquid entities on substrates of various shapes and thermal properties.

4.
Sci Rep ; 14(1): 5492, 2024 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448648

RESUMEN

This study compared computational fluid dynamic (CFD) model predictions on aerosol deposition in six asthmatic patients to the in-vivo results of the same group. Patient-specific ventilation and internal air distribution were prescribed using inspiratory and expiratory CT scans of each patient, accounting for individual lobar air flow distribution. Moreover, the significant influence of realistic mouth and throat geometries on regional deposition is demonstrated. The in-vivo data were obtained from single photon emission computed tomography (SPECT) in 6 subjects with mild asthma selected from a database of historical clinical trials. The governing flow and particle tracking equations were solved numerically using a commercial CFD tool, and the modeled deposition results were compared to the SPECT data. Good agreement was found between the CFD model, applying k-ω SST turbulence model, and SPECT in terms of aerosol deposition. The average difference for the lobar deposition obtained from CFD model and SPECT/CT data was 2.1%. The high level of agreement is due to applying patient specific airway geometries and inspiratory/expiratory CT images, anatomical upper airways, and realistic airway trees. The results of this study show that CFD is a powerful tool to simulate patient-specific deposition if correct boundary conditions are applied and can generate similar information obtained with functional imaging tools, such as SPECT.


Asunto(s)
Asma , Laringe , Humanos , Hidrodinámica , Tomografía Computarizada de Emisión de Fotón Único , Nariz , Asma/diagnóstico por imagen , Aerosoles y Gotitas Respiratorias
5.
Pharmaceutics ; 13(12)2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34959333

RESUMEN

Pulmonary infections caused by Pseudomonas aeruginosa (PA) represent the leading cause of pulmonary morbidity in adults with cystic fibrosis (CF). In addition to tobramycin, colistin, and aztreonam, levofloxacin has been approved in Europe to treat PA infections. Nevertheless, no lung deposition data on inhaled levofloxacin are yet available. We conducted a Functional Respiratory Imaging (FRI) study to predict the lung deposition of levofloxacin in the lungs of patients with CF. Three-dimensional airway models were digitally reconstructed from twenty high-resolution computed tomography scans obtained from historical patients' records. Levofloxacin aerosols generated with the corresponding approved nebuliser were characterised according to pharmacopeia. The obtained data were used to inform a computational fluid dynamics simulation of levofloxacin lung deposition using breathing patterns averaged from actual CF patients' spirometry data. Levofloxacin deposition in the lung periphery was significantly reduced by breathing patterns with low inspiratory times and high inspiratory flow rates. The intrathoracic levofloxacin deposition percentages for moderate and mild CF lungs were, respectively, 37.0% ± 13.6 and 39.5% ± 12.9 of the nominal dose. A significant albeit modest correlation was found between the central-to-peripheral deposition (C/P) ratio of levofloxacin and FEV1. FRI analysis also detected structural differences between mild and moderate CF airways. FRI revealed a significant intrathoracic deposition of levofloxacin aerosols, which distributed preferentially to the lower lung lobes, with an influence of the deterioration of FEV1 on the C/P ratio. The three-dimensional rendering of CF airways also detected structural differences between the airways of patients with mild and moderate CF.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA