Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(11): e2307810121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38437545

RESUMEN

Treating pregnancy-related disorders is exceptionally challenging because the threat of maternal and/or fetal toxicity discourages the use of existing medications and hinders new drug development. One potential solution is the use of lipid nanoparticle (LNP) RNA therapies, given their proven efficacy, tolerability, and lack of fetal accumulation. Here, we describe LNPs for efficacious mRNA delivery to maternal organs in pregnant mice via several routes of administration. In the placenta, our lead LNP transfected trophoblasts, endothelial cells, and immune cells, with efficacy being structurally dependent on the ionizable lipid polyamine headgroup. Next, we show that LNP-induced maternal inflammatory responses affect mRNA expression in the maternal compartment and hinder neonatal development. Specifically, pro-inflammatory LNP structures and routes of administration curtailed efficacy in maternal lymphoid organs in an IL-1ß-dependent manner. Further, immunogenic LNPs provoked the infiltration of adaptive immune cells into the placenta and restricted pup growth after birth. Together, our results provide mechanism-based structural guidance on the design of potent LNPs for safe use during pregnancy.


Asunto(s)
Células Endoteliales , Feto , Liposomas , Nanopartículas , Femenino , Embarazo , Humanos , Animales , Ratones , ARN Mensajero/genética , Atención Prenatal
2.
Immunol Rev ; 308(1): 105-122, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35199366

RESUMEN

The mechanisms underlying maternal tolerance of the semi- or fully-allogeneic fetus are intensely investigated. Across gestation, feto-placental antigens interact with the maternal immune system locally within the trophoblast-decidual interface and distantly through shed cells and soluble molecules that interact with maternal secondary lymphoid tissues. The discovery of extracellular vesicles (EVs) as local or systemic carriers of antigens and immune-regulatory molecules has added a new dimension to our understanding of immune modulation prior to implantation, during trophoblast invasion, and throughout the course of pregnancy. New data on immune-regulatory molecules, located on EVs or within their cargo, suggest a role for EVs in negotiating immune tolerance during gestation. Lessons from the field of transplant immunology also shed light on possible interactions between feto-placentally derived EVs and maternal lymphoid tissues. These insights illuminate a potential role for EVs in major obstetrical disorders. This review provides updated information on intensely studied, pregnancy-related EVs, their cargo molecules, and patterns of fetal-placental-maternal trafficking, highlighting potential immune pathways that might underlie immune suppression or activation in gestational health and disease. Our summary also underscores the likely need to broaden the definition of the maternal-fetal interface to systemic maternal immune tissues that might interact with circulating EVs.


Asunto(s)
Vesículas Extracelulares , Placenta , Comunicación Celular , Vesículas Extracelulares/metabolismo , Femenino , Humanos , Tolerancia Inmunológica , Inmunidad , Placenta/metabolismo , Embarazo , Trofoblastos
4.
J Cell Sci ; 135(5)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33414166

RESUMEN

Ferroptosis is a regulated, non-apoptotic form of cell death, characterized by hydroxy-peroxidation of discrete phospholipid hydroperoxides, particularly hydroperoxyl (Hp) forms of arachidonoyl- and adrenoyl-phosphatidylethanolamine, with a downstream cascade of oxidative damage to membrane lipids, proteins and DNA, culminating in cell death. We recently showed that human trophoblasts are particularly sensitive to ferroptosis caused by depletion or inhibition of glutathione peroxidase 4 (GPX4) or the lipase PLA2G6. Here, we show that trophoblastic ferroptosis is accompanied by a dramatic change in the trophoblast plasma membrane, with macro-blebbing and vesiculation. Immunofluorescence revealed that ferroptotic cell-derived blebs stained positive for F-actin, but negative for cytoplasmic organelle markers. Transfer of conditioned medium that contained detached macrovesicles or co-culture of wild-type target cells with blebbing cells did not stimulate ferroptosis in target cells. Molecular modeling showed that the presence of Hp-phosphatidylethanolamine in the cell membrane promoted its cell ability to be stretched. Together, our data establish that membrane macro-blebbing is characteristic of trophoblast ferroptosis and can serve as a useful marker of this process. Whether or not these blebs are physiologically functional remains to be established.


Asunto(s)
Ferroptosis , Femenino , Humanos , Peroxidación de Lípido , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Placenta , Embarazo , Trofoblastos
5.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33402432

RESUMEN

During pregnancy, the appropriate allocation of nutrients between the mother and the fetus is dominated by maternal-fetal interactions, which is primarily governed by the placenta. The syncytiotrophoblast (STB) lining at the outer surface of the placental villi is directly bathed in maternal blood and controls feto-maternal exchange. The STB is the largest multinucleated cell type in the human body, and is formed through syncytialization of the mononucleated cytotrophoblast. However, the physiological advantage of forming such an extensively multinucleated cellular structure remains poorly understood. Here, we discover that the STB uniquely adapts to nutrient stress by inducing the macropinocytosis machinery through repression of mammalian target of rapamycin (mTOR) signaling. In primary human trophoblasts and in trophoblast cell lines, differentiation toward a syncytium triggers macropinocytosis, which is greatly enhanced during amino acid shortage, induced by inhibiting mTOR signaling. Moreover, inhibiting mTOR in pregnant mice markedly stimulates macropinocytosis in the syncytium. Blocking macropinocytosis worsens the phenotypes of fetal growth restriction caused by mTOR-inhibition. Consistently, placentas derived from fetal growth restriction patients display: 1) Repressed mTOR signaling, 2) increased syncytialization, and 3) enhanced macropinocytosis. Together, our findings suggest that the unique ability of STB to undergo macropinocytosis serves as an essential adaptation to the cellular nutrient status, and support fetal survival and growth under nutrient deprivation.


Asunto(s)
Adaptación Fisiológica , Retardo del Crecimiento Fetal/metabolismo , Intercambio Materno-Fetal/fisiología , Pinocitosis/genética , Proteínas Gestacionales/genética , Serina-Treonina Quinasas TOR/genética , Trofoblastos/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Aminoácidos/deficiencia , Animales , Línea Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Vellosidades Coriónicas/metabolismo , Femenino , Retardo del Crecimiento Fetal/genética , Retardo del Crecimiento Fetal/patología , Regulación de la Expresión Génica , Humanos , Ratones , Embarazo , Proteínas Gestacionales/metabolismo , Cultivo Primario de Células , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo , Trofoblastos/citología
6.
Angew Chem Int Ed Engl ; 63(9): e202314710, 2024 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-38230815

RESUMEN

The vast majority of membrane phospholipids (PLs) include two asymmetrically positioned fatty acyls: oxidizable polyunsaturated fatty acids (PUFA) attached predominantly at the sn2 position, and non-oxidizable saturated/monounsaturated acids (SFA/MUFA) localized at the sn1 position. The peroxidation of PUFA-PLs, particularly sn2-arachidonoyl(AA)- and sn2-adrenoyl(AdA)-containing phosphatidylethanolamines (PE), has been associated with the execution of ferroptosis, a program of regulated cell death. There is a minor subpopulation (≈1-2 mol %) of doubly PUFA-acylated phospholipids (di-PUFA-PLs) whose role in ferroptosis remains enigmatic. Here we report that 15-lipoxygenase (15LOX) exhibits unexpectedly high pro-ferroptotic peroxidation activity towards di-PUFA-PEs. We revealed that peroxidation of several molecular species of di-PUFA-PEs occurred early in ferroptosis. Ferrostatin-1, a typical ferroptosis inhibitor, effectively prevented peroxidation of di-PUFA-PEs. Furthermore, co-incubation of cells with di-AA-PE and 15LOX produced PUFA-PE peroxidation and induced ferroptotic death. The decreased contents of di-PUFA-PEs in ACSL4 KO A375 cells was associated with lower levels of di-PUFA-PE peroxidation and enhanced resistance to ferroptosis. Thus, di-PUFA-PE species are newly identified phospholipid peroxidation substrates and regulators of ferroptosis, representing a promising therapeutic target for many diseases related to ferroptotic death.


Asunto(s)
Araquidonato 15-Lipooxigenasa , Fosfatidiletanolaminas , Fosfatidiletanolaminas/metabolismo , Araquidonato 15-Lipooxigenasa/metabolismo , Muerte Celular , Fosfolípidos/metabolismo , Ácidos Grasos Insaturados/metabolismo , Peroxidación de Lípido
7.
BMC Med ; 21(1): 349, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37679695

RESUMEN

BACKGROUND: Placental dysfunction, a root cause of common syndromes affecting human pregnancy, such as preeclampsia (PE), fetal growth restriction (FGR), and spontaneous preterm delivery (sPTD), remains poorly defined. These common, yet clinically disparate obstetrical syndromes share similar placental histopathologic patterns, while individuals within each syndrome present distinct molecular changes, challenging our understanding and hindering our ability to prevent and treat these syndromes. METHODS: Using our extensive biobank, we identified women with severe PE (n = 75), FGR (n = 40), FGR with a hypertensive disorder (FGR + HDP; n = 33), sPTD (n = 72), and two uncomplicated control groups, term (n = 113), and preterm without PE, FGR, or sPTD (n = 16). We used placental biopsies for transcriptomics, proteomics, metabolomics data, and histological evaluation. After conventional pairwise comparison, we deployed an unbiased, AI-based similarity network fusion (SNF) to integrate the datatypes and identify omics-defined placental clusters. We used Bayesian model selection to compare the association between the histopathological features and disease conditions vs SNF clusters. RESULTS: Pairwise, disease-based comparisons exhibited relatively few differences, likely reflecting the heterogeneity of the clinical syndromes. Therefore, we deployed the unbiased, omics-based SNF method. Our analysis resulted in four distinct clusters, which were mostly dominated by a specific syndrome. Notably, the cluster dominated by early-onset PE exhibited strong placental dysfunction patterns, with weaker injury patterns in the cluster dominated by sPTD. The SNF-defined clusters exhibited better correlation with the histopathology than the predefined disease groups. CONCLUSIONS: Our results demonstrate that integrated omics-based SNF distinctively reclassifies placental dysfunction patterns underlying the common obstetrical syndromes, improves our understanding of the pathological processes, and could promote a search for more personalized interventions.


Asunto(s)
Placenta , Preeclampsia , Embarazo , Recién Nacido , Femenino , Humanos , Teorema de Bayes , Multiómica , Síndrome , Biopsia , Retardo del Crecimiento Fetal
8.
Nat Chem Biol ; 17(4): 465-476, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33542532

RESUMEN

Ferroptosis, triggered by discoordination of iron, thiols and lipids, leads to the accumulation of 15-hydroperoxy (Hp)-arachidonoyl-phosphatidylethanolamine (15-HpETE-PE), generated by complexes of 15-lipoxygenase (15-LOX) and a scaffold protein, phosphatidylethanolamine (PE)-binding protein (PEBP)1. As the Ca2+-independent phospholipase A2ß (iPLA2ß, PLA2G6 or PNPLA9 gene) can preferentially hydrolyze peroxidized phospholipids, it may eliminate the ferroptotic 15-HpETE-PE death signal. Here, we demonstrate that by hydrolyzing 15-HpETE-PE, iPLA2ß averts ferroptosis, whereas its genetic or pharmacological inactivation sensitizes cells to ferroptosis. Given that PLA2G6 mutations relate to neurodegeneration, we examined fibroblasts from a patient with a Parkinson's disease (PD)-associated mutation (fPDR747W) and found selectively decreased 15-HpETE-PE-hydrolyzing activity, 15-HpETE-PE accumulation and elevated sensitivity to ferroptosis. CRISPR-Cas9-engineered Pnpla9R748W/R748W mice exhibited progressive parkinsonian motor deficits and 15-HpETE-PE accumulation. Elevated 15-HpETE-PE levels were also detected in midbrains of rotenone-infused parkinsonian rats and α-synuclein-mutant SncaA53T mice, with decreased iPLA2ß expression and a PD-relevant phenotype. Thus, iPLA2ß is a new ferroptosis regulator, and its mutations may be implicated in PD pathogenesis.


Asunto(s)
Ferroptosis/fisiología , Fosfolipasas A2 Grupo VI/metabolismo , Animales , Araquidonato 15-Lipooxigenasa/metabolismo , Modelos Animales de Enfermedad , Femenino , Fosfolipasas A2 Grupo VI/fisiología , Humanos , Hierro/metabolismo , Leucotrienos/metabolismo , Metabolismo de los Lípidos/fisiología , Peróxidos Lipídicos/metabolismo , Lípidos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Oxidación-Reducción , Enfermedad de Parkinson/metabolismo , Proteínas de Unión a Fosfatidiletanolamina/metabolismo , Fosfolipasas/metabolismo , Fosfolípidos/metabolismo , Ratas , Ratas Endogámicas Lew
9.
Proc Natl Acad Sci U S A ; 117(44): 27319-27328, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33087576

RESUMEN

The recently identified ferroptotic cell death is characterized by excessive accumulation of hydroperoxy-arachidonoyl (C20:4)- or adrenoyl (C22:4)- phosphatidylethanolamine (Hp-PE). The selenium-dependent glutathione peroxidase 4 (GPX4) inhibits ferroptosis, converting unstable ferroptotic lipid hydroperoxides to nontoxic lipid alcohols in a tissue-specific manner. While placental oxidative stress and lipotoxicity are hallmarks of placental dysfunction, the possible role of ferroptosis in placental dysfunction is largely unknown. We found that spontaneous preterm birth is associated with ferroptosis and that inhibition of GPX4 causes ferroptotic injury in primary human trophoblasts and during mouse pregnancy. Importantly, we uncovered a role for the phospholipase PLA2G6 (PNPLA9, iPLA2beta), known to metabolize Hp-PE to lyso-PE and oxidized fatty acid, in mitigating ferroptosis induced by GPX4 inhibition in vitro or by hypoxia/reoxygenation injury in vivo. Together, we identified ferroptosis signaling in the human and mouse placenta, established a role for PLA2G6 in attenuating trophoblastic ferroptosis, and provided mechanistic insights into the ill-defined placental lipotoxicity that may inspire PLA2G6-targeted therapeutic strategies.


Asunto(s)
Ferroptosis/fisiología , Fosfolipasas A2 Grupo VI/metabolismo , Trofoblastos/metabolismo , Animales , Femenino , Glutatión Peroxidasa/metabolismo , Fosfolipasas A2 Grupo VI/genética , Fosfolipasas A2 Grupo VI/fisiología , Humanos , Hierro/metabolismo , Peróxidos Lipídicos/metabolismo , Ratones , Ratones Noqueados , Fosfatidiletanolaminas/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Placenta/metabolismo , Embarazo , Nacimiento Prematuro/metabolismo , Transducción de Señal
10.
J Cell Sci ; 134(5)2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-33093239

RESUMEN

The function of microRNAs (miRNAs) can be cell autonomous or communicated to other cell types and has been implicated in diverse biological processes. We previously demonstrated that miR-517a-3p (miR-517a), a highly expressed member of the chromosome 19 miRNA cluster (C19MC) that is transcribed almost exclusively in human trophoblasts, attenuates viral replication via induction of autophagy in non-trophoblastic recipient cells. However, the molecular mechanisms underlying these effects remain unknown. Here, we identified unc-13 homolog D (UNC13D) as a direct, autophagy-related gene target of miR-517a, leading to repression of UNC13D. In line with the antiviral activity of miR-517a, silencing UNC13D suppressed replication of vesicular stomatitis virus (VSV), whereas overexpression of UNC13D increased VSV levels, suggesting a role for UNC13D silencing in the antiviral activity of miR-517a. We also found that miR-517a activated NF-κB signaling in HEK-293XL cells expressing TLR8, but the effect was not specific to C19MC miRNA. Taken together, our results define mechanistic pathways that link C19MC miRNA with inhibition of viral replication.


Asunto(s)
Cromosomas Humanos Par 19 , Proteínas de la Membrana , MicroARNs , Humanos , MicroARNs/genética , FN-kappa B/genética , Trofoblastos
11.
PLoS Biol ; 17(7): e3000363, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31318874

RESUMEN

For many years, double-layer phospholipid membrane vesicles, released by most cells, were not considered to be of biological significance. This stance has dramatically changed with the recognition of extracellular vesicles (EVs) as carriers of biologically active molecules that can traffic to local or distant targets and execute defined biological functions. The dimensionality of the field has expanded with the appreciation of diverse types of EVs and the complexity of vesicle biogenesis, cargo loading, release pathways, targeting mechanisms, and vesicle processing. With the expanded interest in the field and the accelerated rate of publications on EV structure and function in diverse biomedical fields, it has become difficult to distinguish between well-established biological features of EV and the untested hypotheses or speculative assumptions that await experimental proof. With the growing interest despite the limited evidence, we sought in this essay to formulate a set of unsolved mysteries in the field, sort out established data from fascinating hypotheses, and formulate several challenging questions that must be answered for the field to advance.


Asunto(s)
Comunicación Celular/fisiología , Membrana Celular/metabolismo , Vesículas Extracelulares/metabolismo , Modelos Biológicos , Animales , Transporte Biológico/fisiología , Endocitosis/fisiología , Exocitosis/fisiología , Vesículas Extracelulares/clasificación , Humanos , Tamaño de la Partícula
12.
Am J Obstet Gynecol ; 223(1): 79.e1-79.e8, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32272090

RESUMEN

The National Institutes of Health funding for reproductive sciences research, specifically in academic departments of obstetrics and gynecology, is disproportionately low. Research is one of the most important pillars in advancing healthcare. Despite US Congress' vision in providing increased funding to the National Institutes of Health as a whole, underfunding for research in the departments of obstetrics and gynecology remains one of the several critical drivers in the decline in reproductive health and healthcare for women in the United States.


Asunto(s)
Investigación Biomédica/economía , Ginecología , National Institutes of Health (U.S.)/economía , Obstetricia , Estados Unidos
13.
Am J Obstet Gynecol ; 222(5): 493.e1-493.e13, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31758918

RESUMEN

BACKGROUND: Spontaneous preterm birth is a leading cause of neonatal morbidity and mortality. Early identification of at-risk women by reliable screening tests could reduce the spontaneous preterm birth rate, but conventional methods such as obstetrical history and maternal cervical length screening identify only a minority of spontaneous preterm birth cases. Cervicovaginal fluid might prove to be a useful, readily available biological fluid for identifying spontaneous preterm birth biomarkers. OBJECTIVE: The objective of the study was to identify cervicovaginal fluid biomarkers of early spontaneous preterm birth in a high-risk cohort of pregnant women with a history of spontaneous preterm birth using targeted and shotgun proteomic analyses. STUDY DESIGN: A nested case control study (cases were spontaneous preterm birth <34 weeks in the current pregnancy; controls were spontaneous labor and delivery at 39-41 weeks) was performed using cervicovaginal fluid samples collected at 3 study visits (100/7 to 186/7 weeks, 190/7 to 236/7 weeks, and 280/7 to 316/7 weeks). All participants had a history of at least 1 prior spontaneous preterm birth. Targeted proteomic analysis was performed using a stable isotope-labeled proteome derived from endocervical and vaginal mucosal cells. This served as a standard to quantitate candidate protein levels in individual cervicovaginal fluid samples from the second and third study visits using liquid chromatography-multiple reaction monitoring mass spectrometry. The ratio of endogenous peptide area/stable isotope-labeled proteome-derived peptide area was used to measure levels of 42 peptides in 22 proteins. To maximize biomarker discovery in the cervicovaginal fluid samples, shotgun proteomic analysis also was performed utilizing liquid chromatography and ion trap mass spectrometry. A validation study was performed in second-trimester cervicovaginal fluid samples from an independent study group (12 spontaneous preterm birth cases, 19 term delivery controls) using enzyme-linked immunosorbent assay for 5 proteins expressed at higher levels in spontaneous preterm birth cases compared with controls in targeted or shotgun proteomic analyses. RESULTS: For targeted proteomics, cervicovaginal fluid samples from 33 cases and 32 controls at 190/7 to 236/7 weeks and 16 cases and 14 controls at 280/7 to 316/7 weeks from the same pregnancies were analyzed. When samples were compared between cases and controls, the relative abundance of 5 proteins was greater (P = .02-.05) in cases at both visits, while the relative abundance of 1 protein was lower (P = .03) in cases at both visits. For shotgun proteomics analyses, cervicovaginal fluid samples were pooled for 9 spontaneous preterm birth cases and 9 term delivery controls at each study visit. Shotgun proteomics yielded 28 proteins that were detected at levels >2 times higher and 1 protein that was detected at a level <0.5 times lower in spontaneous preterm birth cases compared with controls at all 3 study visits. Validation enzyme-linked immunosorbent assay for 5 proteins that were detected at higher levels in cervicovaginal fluid samples from spontaneous preterm birth cases compared with term delivery controls in proteomics analyses did not demonstrate statistically significant differences between spontaneous preterm birth cases and controls. CONCLUSIONS: Potential biomarkers of spontaneous preterm birth were identified by targeted and shotgun proteomics analyses in cervicovaginal fluid samples from high-risk, asymptomatic women. Many of the proteins detected at higher levels in cervicovaginal fluid samples from spontaneous preterm birth cases are extracellular matrix proteins and/or regulate cell membrane physiology. These proteins have substantial biological interest, but validation enzyme-linked immunosorbent assay for 5 of these proteins did not yield clinically useful biomarkers for spontaneous preterm birth.


Asunto(s)
Cuello del Útero/metabolismo , Nacimiento Prematuro/diagnóstico , Vagina/metabolismo , Adulto , Biomarcadores/metabolismo , Estudios de Casos y Controles , Cromatografía Liquida , Femenino , Humanos , Recién Nacido , Espectrometría de Masas , Embarazo , Nacimiento Prematuro/metabolismo , Proteoma , Proteómica , Adulto Joven
14.
Am J Obstet Gynecol ; 223(3): 312-321, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32565236

RESUMEN

Recent revolutionary advances at the intersection of medicine, omics, data sciences, computing, epidemiology, and related technologies inspire us to ponder their impact on health. Their potential impact is particularly germane to the biology of pregnancy and perinatal medicine, where limited improvement in health outcomes for women and children has remained a global challenge. We assembled a group of experts to establish a Pregnancy Think Tank to discuss a broad spectrum of major gestational disorders and adverse pregnancy outcomes that affect maternal-infant lifelong health and should serve as targets for leveraging the many recent advances. This report reflects avenues for future effects that hold great potential in 3 major areas: developmental genomics, including the application of methodologies designed to bridge genotypes, physiology, and diseases, addressing vexing questions in early human development; gestational physiology, from immune tolerance to growth and the timing of parturition; and personalized and population medicine, focusing on amalgamating health record data and deep phenotypes to create broad knowledge that can be integrated into healthcare systems and drive discovery to address pregnancy-related disease and promote general health. We propose a series of questions reflecting development, systems biology, diseases, clinical approaches and tools, and population health, and a call for scientific action. Clearly, transdisciplinary science must advance and accelerate to address adverse pregnancy outcomes. Disciplines not traditionally involved in the reproductive sciences, such as computer science, engineering, mathematics, and pharmacology, should be engaged at the study design phase to optimize the information gathered and to identify and further evaluate potentially actionable therapeutic targets. Information sources should include noninvasive personalized sensors and monitors, alongside instructive "liquid biopsies" for noninvasive pregnancy assessment. Future research should also address the diversity of human cohorts in terms of geography, racial and ethnic distributions, and social and health disparities. Modern technologies, for both data-gathering and data-analyzing, make this possible at a scale that was previously unachievable. Finally, the psychosocial and economic environment in which pregnancy takes place must be considered to promote the health and wellness of communities worldwide.


Asunto(s)
Promoción de la Salud/tendencias , Resultado del Embarazo , Economía , Femenino , Desarrollo Fetal/genética , Desarrollo Fetal/fisiología , Humanos , Atención Perinatal , Embarazo , Complicaciones del Embarazo/etnología , Complicaciones del Embarazo/genética , Complicaciones del Embarazo/fisiopatología , Resultado del Embarazo/epidemiología , Resultado del Embarazo/genética , Psicología
15.
Proc Natl Acad Sci U S A ; 114(35): 9433-9438, 2017 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-28784796

RESUMEN

Protecting the fetus from the hematogenous spread of viruses requires multifaceted layers of protection and relies heavily on trophoblasts, the fetal-derived cells that comprise the placental barrier. We showed previously that trophoblasts isolated from full-term placentas resist infection by diverse viruses, including Zika virus (ZIKV), and transfer this resistance to nonplacental cells through the activity of paracrine effectors, including the constitutive release of type III interferons (IFNs). Here, we developed 3D cell-line-based models of human syncytiotrophoblasts, cells that lie in direct contact with maternal blood, and show that these cells recapitulate the antiviral properties of primary trophoblasts through the constitutive release of type III IFNs (IFNλ1 and IFNλ2) and become resistant to ZIKV infection. In addition, using organotypic human midgestation chorionic villous explants, we show that syncytiotrophoblasts isolated from the second trimester of pregnancy also constitutively release type III IFNs and use these IFNs in autocrine and paracrine manners to restrict ZIKV infection. Collectively, these data provide important insights into the defense mechanisms used by syncytiotrophoblasts at various stages of human gestation to resist ZIKV infection and new human models to study the role of type III IFNs in the vertical transmission of ZIKV and other viruses associated with congenital disease.


Asunto(s)
Fibroblastos/inmunología , Fibroblastos/virología , Infección por el Virus Zika/inmunología , Virus Zika/fisiología , Línea Celular , Humanos , Relaciones Materno-Fetales , Nitrilos , Pirazoles/farmacología , Pirimidinas
16.
Proc Natl Acad Sci U S A ; 114(11): 2910-2915, 2017 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-28265065

RESUMEN

When detergents and phospholipid membranes are dispersed in aqueous solutions, they tend to self-assemble into vesicles of various shapes and sizes by virtue of their hydrophobic and hydrophilic segments. A clearer understanding of such vesiculation processes holds promise for better elucidation of human physiology and disease, and paves the way to improved diagnostics, drug development, and drug delivery. Here we present a detailed analysis of the energetics and thermodynamics of vesiculation by recourse to nonlinear elasticity, taking into account large deformation that may arise during the vesiculation process. The effects of membrane size, spontaneous curvature, and membrane stiffness on vesiculation and vesicle size distribution were investigated, and the critical size for vesicle formation was determined and found to compare favorably with available experimental evidence. Our analysis also showed that the critical membrane size for spontaneous vesiculation was correlated with membrane thickness, and further illustrated how the combined effects of membrane thickness and physical properties influenced the size, shape, and distribution of vesicles. These findings shed light on the formation of physiological extracellular vesicles, such as exosomes. The findings also suggest pathways for manipulating the size, shape, distribution, and physical properties of synthetic vesicles, with potential applications in vesicle physiology, the pathobiology of cancer and other diseases, diagnostics using in vivo liquid biopsy, and drug delivery methods.


Asunto(s)
Fosfolípidos/química , Liposomas Unilamelares/química , Exosomas , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Membrana Dobles de Lípidos/química , Modelos Biológicos , Tamaño de la Partícula
17.
Proc Natl Acad Sci U S A ; 114(9): E1587-E1596, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28193876

RESUMEN

Infection of pregnant women by Asian lineage strains of Zika virus (ZIKV) has been linked to brain abnormalities in their infants, yet it is uncertain when during pregnancy the human conceptus is most vulnerable to the virus. We have examined two models to study susceptibility of human placental trophoblast to ZIKV: cytotrophoblast and syncytiotrophoblast derived from placental villi at term and colonies of trophoblast differentiated from embryonic stem cells (ESC). The latter appear to be analogous to the primitive placenta formed during implantation. The cells from term placentas, which resist infection, do not express genes encoding most attachment factors implicated in ZIKV entry but do express many genes associated with antiviral defense. By contrast, the ESC-derived trophoblasts possess a wide range of attachment factors for ZIKV entry and lack components of a robust antiviral response system. These cells, particularly areas of syncytiotrophoblast within the colonies, quickly become infected, produce infectious virus and undergo lysis within 48 h after exposure to low titers (multiplicity of infection > 0.07) of an African lineage strain (MR766 Uganda: ZIKVU) considered to be benign with regards to effects on fetal development. Unexpectedly, lytic effects required significantly higher titers of the presumed more virulent FSS13025 Cambodia (ZIKVC). Our data suggest that the developing fetus might be most vulnerable to ZIKV early in the first trimester before a protective zone of mature villous trophoblast has been established. Additionally, MR766 is highly trophic toward primitive trophoblast, which may put the early conceptus of an infected mother at high risk for destruction.


Asunto(s)
Placenta/virología , Trofoblastos/virología , Infección por el Virus Zika/virología , Virus Zika/patogenicidad , Cambodia , Células Cultivadas , Células Madre Embrionarias/virología , Femenino , Humanos , Embarazo , Primer Trimestre del Embarazo/fisiología , Uganda
18.
Proc Natl Acad Sci U S A ; 114(40): 10584-10589, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28923936

RESUMEN

Exosomes are nanoscale extracellular vesicles that play an important role in many biological processes, including intercellular communications, antigen presentation, and the transport of proteins, RNA, and other molecules. Recently there has been significant interest in exosome-related fundamental research, seeking new exosome-based biomarkers for health monitoring and disease diagnoses. Here, we report a separation method based on acoustofluidics (i.e., the integration of acoustics and microfluidics) to isolate exosomes directly from whole blood in a label-free and contact-free manner. This acoustofluidic platform consists of two modules: a microscale cell-removal module that first removes larger blood components, followed by extracellular vesicle subgroup separation in the exosome-isolation module. In the cell-removal module, we demonstrate the isolation of 110-nm particles from a mixture of micro- and nanosized particles with a yield greater than 99%. In the exosome-isolation module, we isolate exosomes from an extracellular vesicle mixture with a purity of 98.4%. Integrating the two acoustofluidic modules onto a single chip, we isolated exosomes from whole blood with a blood cell removal rate of over 99.999%. With its ability to perform rapid, biocompatible, label-free, contact-free, and continuous-flow exosome isolation, the integrated acoustofluidic device offers a unique approach to investigate the role of exosomes in the onset and progression of human diseases with potential applications in health monitoring, medical diagnosis, targeted drug delivery, and personalized medicine.


Asunto(s)
Acústica , Células Sanguíneas/química , Exosomas/química , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Células Sanguíneas/citología
19.
Proc Natl Acad Sci U S A ; 113(19): E2598-607, 2016 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-27051068

RESUMEN

Human embryonic stem cells (ESCs) readily commit to the trophoblast lineage after exposure to bone morphogenetic protein-4 (BMP-4) and two small compounds, an activin A signaling inhibitor and a FGF2 signaling inhibitor (BMP4/A83-01/PD173074; BAP treatment). During differentiation, areas emerge within the colonies with the biochemical and morphological features of syncytiotrophoblast (STB). Relatively pure fractions of mononucleated cytotrophoblast (CTB) and larger syncytial sheets displaying the expected markers of STB can be obtained by differential filtration of dispersed colonies through nylon strainers. RNA-seq analysis of these fractions has allowed them to be compared with cytotrophoblasts isolated from term placentas before and after such cells had formed syncytia. Although it is clear from extensive gene marker analysis that both ESC- and placenta-derived syncytial cells are trophoblast, each with the potential to transport a wide range of solutes and synthesize placental hormones, their transcriptome profiles are sufficiently dissimilar to suggest that the two cell types have distinct pedigrees and represent functionally different kinds of STB. We propose that the STB generated from human ESCs represents the primitive syncytium encountered in early pregnancy soon after the human trophoblast invades into the uterine wall.


Asunto(s)
Células Madre Embrionarias Humanas , Trofoblastos/citología , Proteína Morfogenética Ósea 4/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Madre Embrionarias/citología , Femenino , Humanos , Placenta/citología , Embarazo
20.
FASEB J ; 31(7): 2760-2770, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28289056

RESUMEN

During pregnancy, placental trophoblasts at the feto-maternal interface produce a broad repertoire of microRNA (miRNA) species. These species include miRNA from the primate-specific chromosome 19 miRNA cluster (C19MC), which is expressed nearly exclusively in the placenta. Trafficking of these miRNAs among the maternal, placental, and fetal compartments is unknown. To determine miRNA expression and trafficking patterns during pregnancy, we sequenced miRNAs in triads of human placenta and of maternal and fetal blood and found large subject-to-subject variability, with C19MC exhibiting compartment-specific expression. We therefore created humanized mice that transgenically express the entire 160-kb human C19MC locus or lentivirally express C19MC miRNA members selectively in the placenta. C19MC transgenic mice expressed a low level of C19MC miRNAs in diverse organs. When pregnant, female C19MC mice exhibited a strikingly elevated (>40-fold) expression of C19MC miRNA in the placenta, compared with other organs, that resembled C19MC miRNAs patterns in humans. Our mouse models showed that placental miRNA traffic primarily to the maternal circulation and that maternal miRNA can traffic to the placenta and even into the fetal compartment. These findings define an extraordinary means of nonhormonal, miRNA-based communication between the placenta and feto-maternal compartments.-Chang, G., Mouillet, J.-F., Mishima, T., Chu, T., Sadovsky, E., Coyne, C. B., Parks, W. T., Surti, U., Sadovsky, Y. Expression and trafficking of placental microRNAs at the feto-maternal interface.


Asunto(s)
Cromosomas Humanos Par 19/genética , Regulación de la Expresión Génica/fisiología , Intercambio Materno-Fetal , MicroARNs/metabolismo , Placenta/fisiología , Animales , Transporte Biológico , Femenino , Humanos , Ratones , Ratones Transgénicos , MicroARNs/genética , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA