Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Nature ; 611(7934): 148-154, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36171287

RESUMEN

Recent single-cell studies of cancer in both mice and humans have identified the emergence of a myofibroblast population specifically marked by the highly restricted leucine-rich-repeat-containing protein 15 (LRRC15)1-3. However, the molecular signals that underlie the development of LRRC15+ cancer-associated fibroblasts (CAFs) and their direct impact on anti-tumour immunity are uncharacterized. Here in mouse models of pancreatic cancer, we provide in vivo genetic evidence that TGFß receptor type 2 signalling in healthy dermatopontin+ universal fibroblasts is essential for the development of cancer-associated LRRC15+ myofibroblasts. This axis also predominantly drives fibroblast lineage diversity in human cancers. Using newly developed Lrrc15-diphtheria toxin receptor knock-in mice to selectively deplete LRRC15+ CAFs, we show that depletion of this population markedly reduces the total tumour fibroblast content. Moreover, the CAF composition is recalibrated towards universal fibroblasts. This relieves direct suppression of tumour-infiltrating CD8+ T cells to enhance their effector function and augments tumour regression in response to anti-PDL1 immune checkpoint blockade. Collectively, these findings demonstrate that TGFß-dependent LRRC15+ CAFs dictate the tumour-fibroblast setpoint to promote tumour growth. These cells also directly suppress CD8+ T cell function and limit responsiveness to checkpoint blockade. Development of treatments that restore the homeostatic fibroblast setpoint by reducing the population of pro-disease LRRC15+ myofibroblasts may improve patient survival and response to immunotherapy.


Asunto(s)
Fibroblastos Asociados al Cáncer , Proteínas de la Membrana , Miofibroblastos , Neoplasias Pancreáticas , Células del Estroma , Animales , Humanos , Ratones , Fibroblastos Asociados al Cáncer/metabolismo , Linfocitos T CD8-positivos/inmunología , Proteínas de la Membrana/metabolismo , Miofibroblastos/metabolismo , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/patología , Receptores de Factores de Crecimiento Transformadores beta , Factor de Crecimiento Transformador beta/metabolismo , Microambiente Tumoral , Antígeno B7-H1
2.
J Am Chem Soc ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38946086

RESUMEN

Antibody-drug conjugates (ADCs) for the treatment of cancer aim to achieve selective delivery of a cytotoxic payload to tumor cells while sparing normal tissue. In vivo, multiple tumor-dependent and -independent processes act on ADCs and their released payloads to impact tumor-versus-normal delivery, often resulting in a poor therapeutic window. An ADC with a labeled payload would make synchronous correlations between distribution and tissue-specific pharmacological effects possible, empowering preclinical and clinical efforts to improve tumor-selective delivery; however, few methods to label small molecules without destroying their pharmacological activity exist. Herein, we present a bioorthogonal switch approach that allows a radiolabel attached to an ADC payload to be removed tracelessly at will. We exemplify this approach with a potent DNA-damaging agent, the pyrrolobenzodiazepine (PBD) dimer, delivered as an antibody conjugate targeted to lung tumor cells. The radiometal chelating group, DOTA, was attached via a novel trans-cyclooctene (TCO)-caged self-immolative para-aminobenzyl (PAB) linker to the PBD, stably attenuating payload activity and allowing tracking of biodistribution in tumor-bearing mice via SPECT-CT imaging (live) or gamma counting (post-mortem). Following TCO-PAB-DOTA reaction with tetrazines optimized for extra- and intracellular reactivity, the label was removed to reveal the unmodified PBD dimer capable of inducing potent tumor cell killing in vitro and in mouse xenografts. The switchable antibody radio-drug conjugate (ArDC) we describe integrates, but decouples, the two functions of a theranostic given that it can serve as a diagnostic for payload delivery in the labeled state, but can be switched on demand to a therapeutic agent (an ADC).

3.
Bioorg Med Chem Lett ; 30(4): 126907, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31902710

RESUMEN

Chimeric molecules which effect intracellular degradation of target proteins via E3 ligase-mediated ubiquitination (e.g., PROTACs) are currently of high interest in medicinal chemistry. However, these entities are relatively large compounds that often possess molecular characteristics which may compromise oral bioavailability, solubility, and/or in vivo pharmacokinetic properties. Accordingly, we explored whether conjugation of chimeric degraders to monoclonal antibodies using technologies originally developed for cytotoxic payloads might provide alternate delivery options for these novel agents. In this report we describe the construction of several degrader-antibody conjugates comprised of two distinct ERα-targeting degrader entities and three independent ADC linker modalities. We subsequently demonstrate the antigen-dependent delivery to MCF7-neo/HER2 cells of the degrader payloads that are incorporated into these conjugates. We also provide evidence for efficient intracellular degrader release from one of the employed linkers. In addition, preliminary data are described which suggest that reasonably favorable in vivo stability properties are associated with the linkers utilized to construct the degrader conjugates.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Portadores de Fármacos/química , Receptor alfa de Estrógeno/inmunología , Anticuerpos Monoclonales/química , Antineoplásicos/química , Antineoplásicos/inmunología , Antineoplásicos/farmacología , Diseño de Fármacos , Receptor alfa de Estrógeno/metabolismo , Humanos , Inmunoconjugados/química , Inmunoconjugados/inmunología , Inmunoconjugados/farmacología , Células MCF-7 , Proteolisis/efectos de los fármacos , Receptor ErbB-2/metabolismo
4.
Bioconjug Chem ; 30(12): 3046-3056, 2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31726009

RESUMEN

Disulfide-linked bioconjugates allow the delivery of pharmacologically active or other cargo to specific tissues in a redox-sensitive fashion. However, an understanding of the kinetics, subcellular distribution, and mechanism of disulfide cleavage in such bioconjugates is generally lacking. Here, we report a modular disulfide-linked TAMRA-BODIPY based FRET probe that can be readily synthesized, modified, and conjugated to a cysteine-containing biomolecule to enable real-time monitoring of disulfide cleavage during receptor-mediated endocytosis in cells. We demonstrate the utility of this probe to study disulfide reduction during HER2 receptor-mediated uptake of a Cys-engineered anti-HER2 THIOMAB antibody. We found that introduction of positive, but not negative, charges in the probe improved retention of the BODIPY catabolite. This permitted the observation of significant disulfide cleavage in endosomes or lysosomes on par with proteolytic cleavage of a similarly charged valine-citrulline peptide-based probe. In general, the FRET probe we describe should enable real-time cellular monitoring of disulfide cleavage in other targeted delivery systems for mechanistic or diagnostic applications. Furthermore, modifications to the released BODIPY moiety permit evaluation of physicochemical properties that govern lysosomal egress or retention, which may have implications for the development of next-generation antibody-drug conjugates.


Asunto(s)
Cisteína/química , Disulfuros/química , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes/química , Animales , Compuestos de Boro , Monitoreo de Drogas/métodos , Endocitosis , Endosomas/metabolismo , Transferencia Resonante de Energía de Fluorescencia/tendencias , Humanos , Inmunoconjugados , Lisosomas/metabolismo , Receptor ErbB-2/inmunología , Rodaminas
5.
Bioconjug Chem ; 30(1): 148-160, 2019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30566343

RESUMEN

Site-specific conjugation of small molecules to antibodies represents an attractive goal for the development of more homogeneous targeted therapies and diagnostics. Most site-specific conjugation strategies require modification or removal of antibody glycans or interchain disulfide bonds or engineering of an antibody mutant that bears a reactive handle. While such methods are effective, they complicate the process of preparing antibody conjugates and can negatively impact biological activity. Herein we report the development and detailed characterization of a robust photoaffinity cross-linking method for site-specific conjugation to fully glycosylated wild-type antibodies. The method employs a benzoylphenylalanine (Bpa) mutant of a previously described 13-residue peptide derived from phage display to bind tightly to the Fc domain; upon UV irradiation, the Bpa residue forms a diradical that reacts with the bound antibody. After the initial discovery of an effective Bpa mutant peptide and optimization of the reaction conditions to enable efficient conjugation without concomitant UV-induced photodamage of the antibody, we assessed the scope of the photoconjugation reaction across different human and nonhuman antibodies and antibody mutants. Next, the specific site of conjugation on a human antibody was characterized in detail by mass spectrometry experiments and at atomic resolution by X-ray crystallography. Finally, we adapted the photoconjugation method to attach a cytotoxic payload site-specifically to a wild-type antibody and showed that the resulting conjugate is both stable in plasma and as potent as a conventional antibody-drug conjugate in cells, portending well for future biological applications.


Asunto(s)
Anticuerpos/química , Reactivos de Enlaces Cruzados/química , Inmunoconjugados/química , Péptidos/química , Etiquetas de Fotoafinidad/química , Animales , Humanos , Mutación , Oxidación-Reducción , Procesos Fotoquímicos , Unión Proteica , Conformación Proteica , Resonancia por Plasmón de Superficie
6.
Drug Metab Dispos ; 47(10): 1146-1155, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31358513

RESUMEN

Antibody-drug conjugates (ADCs) contain a disease-receptor antibody and a payload drug connected via a linker. The payload delivery depends on both tumor properties and ADC characteristics. In this study, we used different linkers, attachment sites, and doses to modulate payload delivery of several ADCs bearing maytansinoids (e.g., DM1), auristatins (e.g., MMAE), and DNA alkylating agents [e.g., pyrrolo[2,1-c][1,4]benzodiazepine-dimer (PBD)] as payloads in HER2- or CD22-expressing xenograft models. The tumor growth inhibition and ADC stability and exposure data were collected and analyzed from these dosed animals. The trend analysis suggests that intratumoral payload exposures that directly related the combination of conjugate linker and dose correlate with the corresponding efficacies of three payload types in two antigen-expressing xenograft models. These preliminary correlations also suggest that a minimal threshold concentration of intratumoral payload is required to support sustained efficacy. In addition, an ADC can deliver an excessive level of payload to tumors that does not enhance efficacy ("Plateau" effect). In contrast to tumor payload concentrations, the assessments of systemic exposures of total antibody (Tab) as well as the linker, dose, site of attachment, plasma stability, and drug-to-antibody ratio changes of these ADCs did not consistently rationalize the observed ADC efficacies. The requirement of a threshold payload concentration for efficacy is further supported by dose fractionation studies with DM1-, MMAE-, and PBD-containing ADCs, which demonstrated that single-dose regimens showed better efficacies than fractionated dosing. Overall, this study demonstrates that 1) the linker and dose together determine the tissue payload concentration that correlates with the antitumor efficacy of ADCs and 2) an ADC can deliver an unnecessary level of payload to tumors in xenograft models.


Asunto(s)
Antineoplásicos Inmunológicos/farmacocinética , Inmunoconjugados/farmacocinética , Receptor ErbB-2/antagonistas & inhibidores , Lectina 2 Similar a Ig de Unión al Ácido Siálico/antagonistas & inhibidores , Ado-Trastuzumab Emtansina/administración & dosificación , Ado-Trastuzumab Emtansina/farmacocinética , Animales , Antineoplásicos Inmunológicos/administración & dosificación , Antineoplásicos Inmunológicos/química , Benzodiazepinas/química , Brentuximab Vedotina/administración & dosificación , Brentuximab Vedotina/farmacocinética , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Inmunoconjugados/administración & dosificación , Ratones , Ratones Transgénicos , Pirroles/química , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Lectina 2 Similar a Ig de Unión al Ácido Siálico/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Drug Metab Dispos ; 47(10): 1156-1163, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31085544

RESUMEN

In cells, catalytic disulfide cleavage is an essential mechanism in protein folding and synthesis. However, detailed enzymatic catalytic mechanism relating cleavage of disulfide bonds in xenobiotics is not well understood. This study reports an enzymatic mechanism of cleavage of disulfide bonds in xenobiotic small molecules and antibody conjugate (ADC) linkers. The chemically stable disulfide bonds in substituted disulfide-containing pyrrolobenzodiazepine (PBD, pyrrolo[2,1-c][1,4]benzodiazepine) monomer prodrugs in presence of glutathione or cysteine were found to be unstable in incubations in whole blood of humans and rats. It was shown the enzymes involved were thioredoxin (TRX) and glutaredoxin (GRX). For a diverse set of drug-linker conjugates, we determined that TRX in the presence of TRX-reductase and NADPH generated the cleaved products that are consistent with catalytic disulfide cleavage and linker immolation. GRX was less rigorously studied; in the set of compounds studied, its role in the catalytic cleavage was also confirmed. Collectively, these in vitro experiments demonstrate that TRX as well as GRX can catalyze the cleavage of disulfide bonds in both small molecules and linkers of ADCs.


Asunto(s)
Glutarredoxinas/metabolismo , Inmunoconjugados/farmacocinética , Tiorredoxinas/metabolismo , Animales , Benzodiazepinas/química , Benzodiazepinas/metabolismo , Disulfuros/química , Disulfuros/metabolismo , Femenino , Humanos , Inmunoconjugados/química , Masculino , Pirroles/química , Pirroles/metabolismo , Ratas , Proteínas Recombinantes/metabolismo , Reductasa de Tiorredoxina-Disulfuro/metabolismo
8.
Bioconjug Chem ; 29(2): 267-274, 2018 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-29369629

RESUMEN

The valine-citrulline (Val-Cit) dipeptide and p-aminobenzyl (PAB) spacer have been commonly used as a cleavable self-immolating linker in ADC design including in the clinically approved ADC, brentuximab vedotin (Adcetris). When the same linker was used to connect to the phenol of the cyclopropabenzindolone (CBI) (P1), the resulting ADC1 showed loss of potency in CD22 target-expressing cancer cell lines (e.g., BJAB, WSU-DLCL2). In comparison, the conjugate (ADC2) of a cyclopropapyrroloindolone (CPI) (P2) was potent despite the two corresponding free drugs having similar picomolar cell-killing activity. Although the corresponding spirocyclization products of P1 and P2, responsible for DNA alkylation, are a prominent component in buffer, the linker immolation was slow when the PAB was connected as an ether (PABE) to the phenol in P1 compared to that in P2. Additional immolation studies with two other PABE-linked substituted phenol compounds showed that electron-withdrawing groups accelerated the immolation to release an acidic phenol-containing payload (to delocalize the negative charge on the anticipated anionic phenol oxygen during immolation). In contrast, efficient immolation of LD4 did not result in an active ADC4 because the payload (P4) had a low potency to kill cells. In addition, nonimmolation of LD5 did not affect the cell-killing potency of its ADC5 since immolation is not required for DNA alkylation by the center-linked pyrrolobenzodiazepine. Therefore, careful evaluation needs to be conducted when the Val-Cit-PAB linker is used to connect antibodies to a phenol-containing drug as the linker immolation, as well as payload potency and stability, affects the cell-killing activity of an ADC.


Asunto(s)
Supervivencia Celular/efectos de los fármacos , Inmunoconjugados/química , Inmunoconjugados/farmacología , Fenol/química , Fenol/farmacología , Antineoplásicos Inmunológicos/química , Antineoplásicos Inmunológicos/farmacología , Brentuximab Vedotina , Línea Celular Tumoral , Ciclopropanos/química , Ciclopropanos/farmacología , Humanos , Neoplasias/tratamiento farmacológico
9.
Bioconjug Chem ; 29(4): 1155-1167, 2018 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-29481745

RESUMEN

Previous investigations on antibody-drug conjugate (ADC) stability have focused on drug release by linker-deconjugation due to the relatively stable payloads such as maytansines. Recent development of ADCs has been focused on exploring technologies to produce homogeneous ADCs and new classes of payloads to expand the mechanisms of action of the delivered drugs. Certain new ADC payloads could undergo metabolism in circulation while attached to antibodies and thus affect ADC stability, pharmacokinetics, and efficacy and toxicity profiles. Herein, we investigate payload stability specifically and seek general guidelines to address payload metabolism and therefore increase the overall ADC stability. Investigation was performed on various payloads with different functionalities (e.g., PNU-159682 analog, tubulysin, cryptophycin, and taxoid) using different conjugation sites (HC-A118C, LC-K149C, and HC-A140C) on THIOMAB antibodies. We were able to reduce metabolism and inactivation of a broad range of payloads of THIOMAB antibody-drug conjugates by employing optimal conjugation sites (LC-K149C and HC-A140C). Additionally, further payload stability was achieved by optimizing the linkers. Coupling relatively stable sites with optimized linkers provided optimal stability and reduction of payloads metabolism in circulation in vivo.


Asunto(s)
Anticuerpos/química , Inmunoconjugados/química , Factores Inmunológicos/química , Preparaciones Farmacéuticas/química , Antígenos/inmunología , Sitios de Unión , Estabilidad de Medicamentos , Humanos , Inmunoconjugados/administración & dosificación , Inmunoconjugados/farmacocinética , Factores Inmunológicos/administración & dosificación , Factores Inmunológicos/farmacocinética
10.
Bioconjug Chem ; 28(8): 2086-2098, 2017 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-28636382

RESUMEN

Conjugation of small molecule payloads to cysteine residues on proteins via a disulfide bond represents an attractive strategy to generate redox-sensitive bioconjugates, which have value as potential diagnostic reagents or therapeutics. Advancement of such "direct-disulfide" bioconjugates to the clinic necessitates chemical methods to form disulfide connections efficiently, without byproducts. The disulfide connection must also be resistant to premature cleavage by thiols prior to arrival at the targeted tissue. We show here that commonly employed methods to generate direct disulfide-linked bioconjugates are inadequate for addressing these challenges. We describe our efforts to optimize direct-disulfide conjugation chemistry, focusing on the generation of conjugates between cytotoxic payloads and cysteine-engineered antibodies (i.e., THIOMAB antibody-drug conjugates, or TDCs). This work culminates in the development of novel, high-yielding conjugation chemistry for creating direct payload disulfide connections to any of several Cys mutation sites in THIOMAB antibodies or to Cys sites in other biomolecules (e.g., human serum albumin and cell-penetrating peptides). We conclude by demonstrating that hindered direct disulfide TDCs with two methyl groups adjacent to the disulfide, which have heretofore not been described for any bioconjugate, are more stable and more efficacious in mouse tumor xenograft studies than less hindered analogs.


Asunto(s)
Cisteína , Disulfuros/química , Inmunoconjugados/química , Péptidos/química , Ingeniería de Proteínas , Animales , Línea Celular Tumoral , Transformación Celular Neoplásica , Humanos , Inmunoconjugados/genética , Ratones
11.
Proc Natl Acad Sci U S A ; 111(52): 18590-5, 2014 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-25518860

RESUMEN

There is great interest in developing selective protein kinase inhibitors by targeting allosteric sites, but these sites often involve protein-protein or protein-peptide interfaces that are very challenging to target with small molecules. Here we present a systematic approach to targeting a functionally conserved allosteric site on the protein kinase PDK1 called the PDK1-interacting fragment (PIF)tide-binding site, or PIF pocket. More than two dozen prosurvival and progrowth kinases dock a conserved peptide tail into this binding site, which recruits them to PDK1 to become activated. Using a site-directed chemical screen, we identified and chemically optimized ligand-efficient, selective, and cell-penetrant small molecules (molecular weight ∼ 380 Da) that compete with the peptide docking motif for binding to PDK1. We solved the first high-resolution structure of a peptide docking motif (PIFtide) bound to PDK1 and mapped binding energy hot spots using mutational analysis. We then solved structures of PDK1 bound to the allosteric small molecules, which revealed a binding mode that remarkably mimics three of five hot-spot residues in PIFtide. These allosteric small molecules are substrate-selective PDK1 inhibitors when used as single agents, but when combined with an ATP-competitive inhibitor, they completely suppress the activation of the downstream kinases. This work provides a promising new scaffold for the development of high-affinity PIF pocket ligands, which may be used to enhance the anticancer activity of existing PDK1 inhibitors. Moreover, our results provide further impetus for exploring the helix αC patches of other protein kinases as potential therapeutic targets even though they involve protein-protein interfaces.


Asunto(s)
Proteínas Quinasas Dependientes de 3-Fosfoinosítido , Simulación del Acoplamiento Molecular , Péptidos , Inhibidores de Proteínas Quinasas , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/antagonistas & inhibidores , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/química , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/genética , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/metabolismo , Regulación Alostérica/efectos de los fármacos , Sitio Alostérico , Secuencias de Aminoácidos , Antineoplásicos/química , Antineoplásicos/farmacología , Cristalografía por Rayos X , Células HEK293 , Humanos , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Neoplasias/genética , Neoplasias/patología , Péptidos/química , Péptidos/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Estructura Secundaria de Proteína
12.
Drug Metab Dispos ; 44(9): 1517-23, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27417182

RESUMEN

Despite recent technological advances in quantifying antibody drug conjugate (ADC) species, such as total antibody, conjugated antibody, conjugated drug, and payload drug in circulation, the correlation of their exposures with the efficacy of ADC outcomes in vivo remains challenging. Here, the chemical structures and concentrations of intratumor catabolites were investigated to better understand the drivers of ADC in vivo efficacy. Anti-CD22 disulfide-linked pyrrolobenzodiazepine (PBD-dimer) conjugates containing methyl- and cyclobutyl-substituted disulfide linkers exhibited strong efficacy in a WSU-DLCL2 xenograft mouse model, whereas an ADC derived from a cyclopropyl linker was inactive. Total ADC antibody concentrations and drug-to-antibody ratios (DAR) in circulation were similar between the cyclobutyl-containing ADC and the cyclopropyl-containing ADC; however, the former afforded the release of the PBD-dimer payload in the tumor, but the latter only generated a nonimmolating thiol-containing catabolite that did not bind to DNA. These results suggest that intratumor catabolite analysis rather than systemic pharmacokinetic analysis may be used to better explain and predict ADC in vivo efficacy. These are good examples to demonstrate that the chemical nature and concentration of intratumor catabolites depend on the linker type used for drug conjugation, and the potency of the released drug moiety ultimately determines the ADC in vivo efficacy.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacocinética , Benzodiazepinas/farmacocinética , Inmunoconjugados/farmacocinética , Neoplasias/metabolismo , Pirroles/farmacocinética , Animales , Anticuerpos Monoclonales Humanizados/química , Benzodiazepinas/química , Femenino , Inmunoconjugados/química , Ratones , Ratones SCID , Pirroles/química , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Proc Natl Acad Sci U S A ; 108(15): 6056-61, 2011 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-21430264

RESUMEN

There is significant interest in identifying and characterizing allosteric sites in enzymes such as protein kinases both for understanding allosteric mechanisms as well as for drug discovery. Here, we apply a site-directed technology, disulfide trapping, to interrogate structurally and functionally how an allosteric site on the Ser/Thr kinase, 3-phosphoinositide-dependent kinase 1 (PDK1)--the PDK1-interacting-fragment (PIF) pocket--is engaged by an activating peptide motif on downstream substrate kinases (PIFtides) and by small molecule fragments. By monitoring pairwise disulfide conjugation between PIFtide and PDK1 cysteine mutants, we defined the PIFtide binding orientation in the PIF pocket of PDK1 and assessed subtle relationships between PIFtide positioning and kinase activation. We also discovered a variety of small molecule fragment disulfides (< 300 Da) that could either activate or inhibit PDK1 by conjugation to the PIF pocket, thus displaying greater functional diversity than is displayed by PIFtides conjugated to the same sites. Biochemical data and three crystal structures provided insight into the mechanism of action of the best fragment activators and inhibitors. These studies show that disulfide trapping is useful for characterizing allosteric sites on kinases and that a single allosteric site on a protein kinase can be exploited for both activation and inhibition by small molecules.


Asunto(s)
Sitio Alostérico , Cisteína/química , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/química , Proteínas Quinasas Dependientes de 3-Fosfoinosítido , Regulación Alostérica/efectos de los fármacos , Cisteína/genética , Mutación , Péptidos/química , Péptidos/genética , Proteínas Serina-Treonina Quinasas/genética , Bibliotecas de Moléculas Pequeñas
14.
Mol Cancer Ther ; 23(1): 84-91, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37774393

RESUMEN

Key defining attributes of an antibody-drug conjugate (ADC) include the choice of the targeting antibody, linker, payload, and the drug-to-antibody ratio (DAR). Historically, most ADC platforms have used the same DAR for all targets, regardless of target characteristics. However, recent studies and modeling suggest that the optimal DAR can depend on target expression level and intratumoral heterogeneity, target internalization and trafficking, and characteristics of the linker and payload. An ADC platform that enables DAR optimization could improve the success rate of clinical candidates. Here we report a systematic exploration of DAR across a wide range, by combining THIOMAB protein engineering technology with Dolasynthen, an auristatin-based platform with monomeric and trimeric variants. This approach enabled the generation of homogeneous, site-specific ADCs spanning a discrete range of DARs 2, 4, 6, 12, and 18 by conjugation of trastuzumab IgG1 THIOMAB constructs with 1, 2, or 3 engineered cysteines to monomeric or trimeric Dolasynthen. All ADCs had physicochemical properties that translated to excellent in vivo pharmacology. Following a single dose of ADCs in a HER2 xenograft model with moderate antigen expression, our data demonstrated comparable pharmacokinetics for the conjugates across all DARs and dose-dependent efficacy of all test articles. These results demonstrate that the Dolasynthen platform enables the generation of ADCs with a broad range of DAR values and with comparable physiochemical, pharmacologic, and pharmacokinetics profiles; thus, the Dolasynthen platform enables the empirical determination of the optimal DAR for a clinical candidate for a given target.


Asunto(s)
Inmunoconjugados , Humanos , Inmunoconjugados/química , Ensayos Antitumor por Modelo de Xenoinjerto , Trastuzumab/farmacología , Trastuzumab/química , Receptor ErbB-2/metabolismo , Cisteína
15.
Nat Commun ; 15(1): 466, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38212321

RESUMEN

Approved antibody-drug conjugates (ADCs) for HER2-positive breast cancer include trastuzumab emtansine and trastuzumab deruxtecan. To develop a differentiated HER2 ADC, we chose an antibody that does not compete with trastuzumab or pertuzumab for binding, conjugated to a reduced potency PBD (pyrrolobenzodiazepine) dimer payload. PBDs are potent cytotoxic agents that alkylate and cross-link DNA. In our study, the PBD dimer is modified to alkylate, but not cross-link DNA. This HER2 ADC, DHES0815A, demonstrates in vivo efficacy in models of HER2-positive and HER2-low cancers and is well-tolerated in cynomolgus monkey safety studies. Mechanisms of action include induction of DNA damage and apoptosis, activity in non-dividing cells, and bystander activity. A dose-escalation study (ClinicalTrials.gov: NCT03451162) in patients with HER2-positive metastatic breast cancer, with the primary objective of evaluating the safety and tolerability of DHES0815A and secondary objectives of characterizing the pharmacokinetics, objective response rate, duration of response, and formation of anti-DHES0815A antibodies, is reported herein. Despite early signs of anti-tumor activity, patients at higher doses develop persistent, non-resolvable dermal, ocular, and pulmonary toxicities, which led to early termination of the phase 1 trial.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Antineoplásicos , Benzodiazepinas , Neoplasias de la Mama , Inmunoconjugados , Humanos , Animales , Femenino , Neoplasias de la Mama/genética , Macaca fascicularis/genética , Receptor ErbB-2/metabolismo , Trastuzumab/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , ADN
16.
J Am Chem Soc ; 135(9): 3363-6, 2013 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-23384013

RESUMEN

Like many coactivators, the GACKIX domain of the master coactivator CBP/p300 recognizes transcriptional activators of diverse sequence composition via dynamic binding surfaces. The conformational dynamics of GACKIX that underlie its function also render it especially challenging for structural characterization. We have found that the ligand discovery strategy of Tethering is an effective method for identifying small-molecule fragments that stabilize the GACKIX domain, enabling for the first time the crystallographic characterization of this important motif. The 2.0 Å resolution structure of GACKIX complexed to a small molecule was further analyzed by molecular dynamics simulations, which revealed the importance of specific side-chain motions that remodel the activator binding site in order to accommodate binding partners of distinct sequence and size. More broadly, these results suggest that Tethering can be a powerful strategy for identifying small-molecule stabilizers of conformationally malleable proteins, thus facilitating their structural characterization and accelerating the discovery of small-molecule modulators.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas/química , Bibliotecas de Moléculas Pequeñas/química , Modelos Moleculares , Estructura Molecular , Propiedades de Superficie
17.
Chem Sci ; 13(11): 3147-3160, 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35414872

RESUMEN

The antibody-drug conjugate (ADC) is a well-validated modality for the cell-specific delivery of small molecules with impact expanding rapidly beyond their originally-intended purpose of treating cancer. However, antibody-mediated delivery (AMD) remains inefficient, limiting its applicability to targeting highly potent payloads to cells with high antigen expression. Maximizing the number of payloads delivered per antibody is one key way in which delivery efficiency can be improved, although this has been challenging to carry out; with few exceptions, increasing the drug-to-antibody ratio (DAR) above ∼4 typically destroys the biophysical properties and in vivo efficacy for ADCs. Herein, we describe the development of a novel bioconjugation platform combining cysteine-engineered (THIOMAB) antibodies and recombinant XTEN polypeptides for the unprecedented generation of homogeneous, stable "TXCs" with DAR of up to 18. Across three different bioactive payloads, we demonstrated improved AMD to tumors and Staphylococcus aureus bacteria for high-DAR TXCs relative to conventional low-DAR ADCs.

18.
Mol Cancer Ther ; 20(2): 340-346, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33273056

RESUMEN

We are interested in developing a second generation of antibody-drug conjugates (ADCs) for the treatment of non-Hodgkin lymphoma (NHL) that could provide a longer duration of response and be more effective in indolent NHL than the microtubule-inhibiting ADCs pinatuzumab vedotin [anti-CD22-vc-monomethyl auristatin E (MMAE)] and polatuzumab vedotin (anti-CD79b-vc-MMAE). Pinatuzumab vedotin (anti-CD22-vc-MMAE) and polatuzumab vedotin (anti-CD79b-vc-MMAE) are ADCs that contain the microtubule inhibitor MMAE. Clinical trial data suggest that these ADCs have promising efficacy for the treatment of NHL; however, some patients do not respond or become resistant to the ADCs. We tested an anti-CD22 ADC with a seco-CBI-dimer payload, thio-Hu anti-CD22-(LC:K149C)-SN36248, and compared it with pinatuzumab vedotin for its efficacy and duration of response in xenograft models and its ability to deplete normal B cells in cynomolgus monkeys. We found that anti-CD22-(LC:K149C)-SN36248 was effective in xenograft models resistant to pinatuzumab vedotin, gave a longer duration of response, had a different mechanism of resistance, and was able to deplete normal B cells better than pinatuzumab vedotin. These studies provide evidence that anti-CD22-(LC:K149C)-SN36248 has the potential for longer duration of response and more efficacy in indolent NHL than MMAE ADCs and may provide the opportunity to improve outcomes for patients with NHL.


Asunto(s)
Aminobenzoatos/uso terapéutico , Inmunoconjugados/uso terapéutico , Linfoma no Hodgkin/tratamiento farmacológico , Oligopéptidos/uso terapéutico , Lectina 2 Similar a Ig de Unión al Ácido Siálico/metabolismo , Aminobenzoatos/farmacología , Animales , Línea Celular Tumoral , Haplorrinos , Humanos , Inmunoconjugados/farmacología , Oligopéptidos/farmacología
19.
MAbs ; 13(1): 1862452, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33382956

RESUMEN

Early success with brentuximab vedotin in treating classical Hodgkin lymphoma spurred an influx of at least 20 monomethyl auristatin E (MMAE) antibody-drug conjugates (ADCs) into clinical trials. While three MMAE-ADCs have been approved, most of these conjugates are no longer being investigated in clinical trials. Some auristatin conjugates show limited or no efficacy at tolerated doses, but even for drugs driving initial remissions, tumor regrowth and metastasis often rapidly occur. Here we describe the development of second-generation therapeutic ADCs targeting Lymphocyte antigen 6E (Ly6E) where the tubulin polymerization inhibitor MMAE (Compound 1) is replaced with DNA-damaging agents intended to drive increased durability of response. Comparison of a seco-cyclopropyl benzoindol-4-one (CBI)-dimer (compound 2) to MMAE showed increased potency, activity across more cell lines, and resistance to efflux by P-glycoprotein, a drug transporter commonly upregulated in tumors. Both anti-Ly6E-CBI and -MMAE conjugates drove single-dose efficacy in xenograft and patient-derived xenograft models, but seco-CBI-dimer conjugates showed reduced tumor outgrowth following multiple weeks of treatment, suggesting that they are less susceptible to developing resistance. In parallel, we explored approaches to optimize the targeting antibody. In contrast to immunization with recombinant Ly6E or Ly6E DNA, immunization with virus-like particles generated a high-affinity anti-Ly6E antibody. Conjugates to this antibody improve efficacy versus a previous clinical candidate both in vitro and in vivo with multiple cytotoxics. Conjugation of compound 2 to the second-generation antibody results in a substantially improved ADC with promising preclinical efficacy.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Antígenos de Superficie/inmunología , Antineoplásicos/inmunología , Inmunoconjugados/inmunología , Oligopéptidos/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Animales , Anticuerpos Monoclonales/farmacocinética , Anticuerpos Monoclonales/farmacología , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Antineoplásicos Inmunológicos/farmacocinética , Antineoplásicos Inmunológicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/inmunología , Femenino , Proteínas Ligadas a GPI/inmunología , Células HEK293 , Humanos , Inmunoconjugados/farmacocinética , Inmunoconjugados/farmacología , Ratones SCID , Ratas Sprague-Dawley , Carga Tumoral/efectos de los fármacos , Carga Tumoral/inmunología
20.
J Med Chem ; 64(5): 2534-2575, 2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33596065

RESUMEN

The biological and medicinal impacts of proteolysis-targeting chimeras (PROTACs) and related chimeric molecules that effect intracellular degradation of target proteins via ubiquitin ligase-mediated ubiquitination continue to grow. However, these chimeric entities are relatively large compounds that often possess molecular characteristics, which may compromise oral bioavailability, solubility, and/or in vivo pharmacokinetic properties. We therefore explored the conjugation of such molecules to monoclonal antibodies using technologies originally developed for cytotoxic payloads so as to provide alternate delivery options for these novel agents. In this report, we describe the first phase of our systematic development of antibody-drug conjugates (ADCs) derived from bromodomain-containing protein 4 (BRD4)-targeting chimeric degrader entities. We demonstrate the antigen-dependent delivery of the degrader payloads to PC3-S1 prostate cancer cells along with related impacts on MYC transcription and intracellular BRD4 levels. These experiments culminate with the identification of one degrader conjugate, which exhibits antigen-dependent antiproliferation effects in LNCaP prostate cancer cells.


Asunto(s)
Proteínas de Ciclo Celular/antagonistas & inhibidores , Dipéptidos/farmacología , Compuestos Heterocíclicos con 3 Anillos/farmacología , Inmunoconjugados/farmacología , Proteolisis/efectos de los fármacos , Factores de Transcripción/antagonistas & inhibidores , Anticuerpos Monoclonales/inmunología , Antígenos de Neoplasias/inmunología , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Dipéptidos/síntesis química , Dipéptidos/farmacocinética , Compuestos Heterocíclicos con 3 Anillos/síntesis química , Compuestos Heterocíclicos con 3 Anillos/farmacocinética , Humanos , Inmunoconjugados/química , Inmunoconjugados/inmunología , Oxidorreductasas/inmunología , Células PC-3 , Factores de Transcripción/metabolismo , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA