Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Cell ; 148(4): 651-63, 2012 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-22341440

RESUMEN

To assess telomerase as a cancer therapeutic target and determine adaptive mechanisms to telomerase inhibition, we modeled telomerase reactivation and subsequent extinction in T cell lymphomas arising in Atm(-/-) mice engineered with an inducible telomerase reverse transcriptase allele. Telomerase reactivation in the setting of telomere dysfunction enabled full malignant progression with alleviation of telomere dysfunction-induced checkpoints. These cancers possessed copy number alterations targeting key loci in human T cell lymphomagenesis. Upon telomerase extinction, tumor growth eventually slowed with reinstatement of telomere dysfunction-induced checkpoints, yet growth subsequently resumed as tumors acquired alternative lengthening of telomeres (ALT) and aberrant transcriptional networks centering on mitochondrial biology and oxidative defense. ALT+ tumors acquired amplification/overexpression of PGC-1ß, a master regulator of mitochondrial biogenesis and function, and they showed marked sensitivity to PGC-1ß or SOD2 knockdown. Genetic modeling of telomerase extinction reveals vulnerabilities that motivate coincidental inhibition of mitochondrial maintenance and oxidative defense mechanisms to enhance antitelomerase cancer therapy.


Asunto(s)
Mitocondrias , Telomerasa/antagonistas & inhibidores , Homeostasis del Telómero , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Técnicas de Silenciamiento del Gen , Genes cdc , Humanos , Linfoma de Células T/genética , Linfoma de Células T/metabolismo , Linfoma de Células T/patología , Ratones , Mitocondrias/metabolismo , Invasividad Neoplásica/patología , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Especies Reactivas de Oxígeno/metabolismo , Receptores de Estrógenos/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Telomerasa/genética , Telomerasa/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/genética
2.
Nat Rev Mol Cell Biol ; 13(6): 397-404, 2012 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-22588366

RESUMEN

Progressive DNA damage and mitochondrial decline are both considered to be prime instigators of natural ageing. Traditionally, these two pathways have been viewed largely in isolation. However, recent studies have revealed a molecular circuit that directly links DNA damage to compromised mitochondrial biogenesis and function via p53. This axis of ageing may account for both organ decline and disease development associated with advanced age and could illuminate a path for the development of relevant therapeutics.


Asunto(s)
Envejecimiento/fisiología , Redes y Vías Metabólicas , Mitocondrias/metabolismo , Telómero/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Humanos , Modelos Biológicos
3.
Proc Natl Acad Sci U S A ; 115(51): E11978-E11987, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30498031

RESUMEN

A Clinical Proteomic Tumor Analysis Consortium (CPTAC) proteogenomic analysis prioritized dihydropyrimidinase-like-3 (DPYSL3) as a multilevel (RNA/protein/phosphoprotein) expression outlier specific to the claudin-low (CLOW) subset of triple-negative breast cancers. A PubMed informatics tool indicated a paucity of data in the context of breast cancer, which further prioritized DPYSL3 for study. DPYSL3 knockdown in DPYSL3-positive ([Formula: see text]) CLOW cell lines demonstrated reduced proliferation, yet enhanced motility and increased expression of epithelial-to-mesenchymal transition (EMT) markers, suggesting that DPYSL3 is a multifunctional signaling modulator. Slower proliferation in DPYSL3-negative ([Formula: see text]) CLOW cells was associated with accumulation of multinucleated cells, indicating a mitotic defect that was associated with a collapse of the vimentin microfilament network and increased vimentin phosphorylation. DPYSL3 also suppressed the expression of EMT regulators SNAIL and TWIST and opposed p21 activated kinase 2 (PAK2)-dependent migration. However, these EMT regulators in turn induce DPYSL3 expression, suggesting that DPYSL3 participates in negative feedback on EMT. In conclusion, DPYSL3 expression identifies CLOW tumors that will be sensitive to approaches that promote vimentin phosphorylation during mitosis and inhibitors of PAK signaling during migration and EMT.


Asunto(s)
Neoplasias de la Mama/metabolismo , Movimiento Celular/fisiología , Claudinas/metabolismo , Transición Epitelial-Mesenquimal/fisiología , Regulación Neoplásica de la Expresión Génica , Mitosis/fisiología , Proteínas Musculares/metabolismo , Animales , Neoplasias de la Mama/genética , Línea Celular Tumoral , Proliferación Celular , Transición Epitelial-Mesenquimal/genética , Retroalimentación Fisiológica , Femenino , Técnicas de Silenciamiento del Gen , Xenoinjertos , Humanos , Masculino , Ratones , Ratones Desnudos , Proteínas Musculares/genética , Proteínas Nucleares/metabolismo , Fosforilación , Proteogenómica , Proteómica , Proteínas Represoras/metabolismo , Transducción de Señal , Factores de Transcripción de la Familia Snail/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Proteína 1 Relacionada con Twist/metabolismo , Vimentina/metabolismo , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Quinasas p21 Activadas/metabolismo
4.
Genes Dev ; 25(7): 717-29, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21406549

RESUMEN

Macroautophagy (autophagy) is a regulated catabolic pathway to degrade cellular organelles and macromolecules. The role of autophagy in cancer is complex and may differ depending on tumor type or context. Here we show that pancreatic cancers have a distinct dependence on autophagy. Pancreatic cancer primary tumors and cell lines show elevated autophagy under basal conditions. Genetic or pharmacologic inhibition of autophagy leads to increased reactive oxygen species, elevated DNA damage, and a metabolic defect leading to decreased mitochondrial oxidative phosphorylation. Together, these ultimately result in significant growth suppression of pancreatic cancer cells in vitro. Most importantly, inhibition of autophagy by genetic means or chloroquine treatment leads to robust tumor regression and prolonged survival in pancreatic cancer xenografts and genetic mouse models. These results suggest that, unlike in other cancers where autophagy inhibition may synergize with chemotherapy or targeted agents by preventing the up-regulation of autophagy as a reactive survival mechanism, autophagy is actually required for tumorigenic growth of pancreatic cancers de novo, and drugs that inactivate this process may have a unique clinical utility in treating pancreatic cancers and other malignancies with a similar dependence on autophagy. As chloroquine and its derivatives are potent inhibitors of autophagy and have been used safely in human patients for decades for a variety of purposes, these results are immediately translatable to the treatment of pancreatic cancer patients, and provide a much needed, novel vantage point of attack.


Asunto(s)
Autofagia , Carcinoma Ductal Pancreático/patología , Neoplasias Pancreáticas/patología , Animales , Antineoplásicos/farmacología , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Cloroquina/farmacología , Daño del ADN , Humanos , Ratones , Ratones Desnudos , Interferencia de ARN , Distribución Aleatoria , Especies Reactivas de Oxígeno/metabolismo , Trasplante Heterólogo
5.
Nature ; 488(7411): 337-42, 2012 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-22895339

RESUMEN

Inactivation of tumour-suppressor genes by homozygous deletion is a prototypic event in the cancer genome, yet such deletions often encompass neighbouring genes. We propose that homozygous deletions in such passenger genes can expose cancer-specific therapeutic vulnerabilities when the collaterally deleted gene is a member of a functionally redundant family of genes carrying out an essential function. The glycolytic gene enolase 1 (ENO1) in the 1p36 locus is deleted in glioblastoma (GBM), which is tolerated by the expression of ENO2. Here we show that short-hairpin-RNA-mediated silencing of ENO2 selectively inhibits growth, survival and the tumorigenic potential of ENO1-deleted GBM cells, and that the enolase inhibitor phosphonoacetohydroxamate is selectively toxic to ENO1-deleted GBM cells relative to ENO1-intact GBM cells or normal astrocytes. The principle of collateral vulnerability should be applicable to other passenger-deleted genes encoding functionally redundant essential activities and provide an effective treatment strategy for cancers containing such genomic events.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Genes Esenciales/genética , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Terapia Molecular Dirigida/métodos , Eliminación de Secuencia/genética , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/deficiencia , Biomarcadores de Tumor/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular , Cromosomas Humanos Par 1/genética , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Inhibidores Enzimáticos , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Genes Supresores de Tumor , Glioblastoma/patología , Homocigoto , Humanos , Ácidos Hidroxámicos/farmacología , Ácidos Hidroxámicos/uso terapéutico , Ratones , Trasplante de Neoplasias , Ácido Fosfonoacético/análogos & derivados , Ácido Fosfonoacético/farmacología , Ácido Fosfonoacético/uso terapéutico , Fosfopiruvato Hidratasa/antagonistas & inhibidores , Fosfopiruvato Hidratasa/deficiencia , Fosfopiruvato Hidratasa/genética , Fosfopiruvato Hidratasa/metabolismo , ARN Interferente Pequeño/genética , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/genética
6.
Nature ; 469(7328): 102-6, 2011 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-21113150

RESUMEN

An ageing world population has fuelled interest in regenerative remedies that may stem declining organ function and maintain fitness. Unanswered is whether elimination of intrinsic instigators driving age-associated degeneration can reverse, as opposed to simply arrest, various afflictions of the aged. Such instigators include progressively damaged genomes. Telomerase-deficient mice have served as a model system to study the adverse cellular and organismal consequences of wide-spread endogenous DNA damage signalling activation in vivo. Telomere loss and uncapping provokes progressive tissue atrophy, stem cell depletion, organ system failure and impaired tissue injury responses. Here, we sought to determine whether entrenched multi-system degeneration in adult mice with severe telomere dysfunction can be halted or possibly reversed by reactivation of endogenous telomerase activity. To this end, we engineered a knock-in allele encoding a 4-hydroxytamoxifen (4-OHT)-inducible telomerase reverse transcriptase-oestrogen receptor (TERT-ER) under transcriptional control of the endogenous TERT promoter. Homozygous TERT-ER mice have short dysfunctional telomeres and sustain increased DNA damage signalling and classical degenerative phenotypes upon successive generational matings and advancing age. Telomerase reactivation in such late generation TERT-ER mice extends telomeres, reduces DNA damage signalling and associated cellular checkpoint responses, allows resumption of proliferation in quiescent cultures, and eliminates degenerative phenotypes across multiple organs including testes, spleens and intestines. Notably, somatic telomerase reactivation reversed neurodegeneration with restoration of proliferating Sox2(+) neural progenitors, Dcx(+) newborn neurons, and Olig2(+) oligodendrocyte populations. Consistent with the integral role of subventricular zone neural progenitors in generation and maintenance of olfactory bulb interneurons, this wave of telomerase-dependent neurogenesis resulted in alleviation of hyposmia and recovery of innate olfactory avoidance responses. Accumulating evidence implicating telomere damage as a driver of age-associated organ decline and disease risk and the marked reversal of systemic degenerative phenotypes in adult mice observed here support the development of regenerative strategies designed to restore telomere integrity.


Asunto(s)
Envejecimiento/metabolismo , Envejecimiento/patología , Telomerasa/deficiencia , Telomerasa/metabolismo , Envejecimiento/efectos de los fármacos , Animales , Reacción de Prevención/efectos de los fármacos , Encéfalo/anatomía & histología , Encéfalo/citología , Encéfalo/efectos de los fármacos , Encéfalo/patología , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Daño del ADN/efectos de los fármacos , Proteína Doblecortina , Activación Enzimática/efectos de los fármacos , Reactivadores Enzimáticos/farmacología , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Vaina de Mielina/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/enzimología , Células-Madre Neurales/patología , Tamaño de los Órganos/efectos de los fármacos , Fenotipo , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Medicina Regenerativa , Olfato/efectos de los fármacos , Olfato/fisiología , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacología , Telomerasa/genética , Telómero/efectos de los fármacos , Telómero/metabolismo , Telómero/patología
7.
Nature ; 470(7334): 359-65, 2011 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-21307849

RESUMEN

Telomere dysfunction activates p53-mediated cellular growth arrest, senescence and apoptosis to drive progressive atrophy and functional decline in high-turnover tissues. The broader adverse impact of telomere dysfunction across many tissues including more quiescent systems prompted transcriptomic network analyses to identify common mechanisms operative in haematopoietic stem cells, heart and liver. These unbiased studies revealed profound repression of peroxisome proliferator-activated receptor gamma, coactivator 1 alpha and beta (PGC-1α and PGC-1ß, also known as Ppargc1a and Ppargc1b, respectively) and the downstream network in mice null for either telomerase reverse transcriptase (Tert) or telomerase RNA component (Terc) genes. Consistent with PGCs as master regulators of mitochondrial physiology and metabolism, telomere dysfunction is associated with impaired mitochondrial biogenesis and function, decreased gluconeogenesis, cardiomyopathy, and increased reactive oxygen species. In the setting of telomere dysfunction, enforced Tert or PGC-1α expression or germline deletion of p53 (also known as Trp53) substantially restores PGC network expression, mitochondrial respiration, cardiac function and gluconeogenesis. We demonstrate that telomere dysfunction activates p53 which in turn binds and represses PGC-1α and PGC-1ß promoters, thereby forging a direct link between telomere and mitochondrial biology. We propose that this telomere-p53-PGC axis contributes to organ and metabolic failure and to diminishing organismal fitness in the setting of telomere dysfunction.


Asunto(s)
Mitocondrias/metabolismo , Mitocondrias/patología , Telómero/metabolismo , Telómero/patología , Adenosina Trifosfato/biosíntesis , Envejecimiento/metabolismo , Envejecimiento/patología , Animales , Cardiomiopatías/inducido químicamente , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Cardiomiopatías/fisiopatología , Proliferación Celular , ADN Mitocondrial/análisis , Doxorrubicina/toxicidad , Gluconeogénesis , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Hígado/citología , Hígado/metabolismo , Ratones , Miocardio/citología , Miocardio/metabolismo , ARN/genética , Especies Reactivas de Oxígeno/metabolismo , Telomerasa/deficiencia , Telomerasa/genética , Telómero/enzimología , Telómero/genética , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
8.
Nature ; 464(7288): 520-8, 2010 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-20336134

RESUMEN

The study of human genetic disorders and mutant mouse models has provided evidence that genome maintenance mechanisms, DNA damage signalling and metabolic regulation cooperate to drive the ageing process. In particular, age-associated telomere damage, diminution of telomere 'capping' function and associated p53 activation have emerged as prime instigators of a functional decline of tissue stem cells and of mitochondrial dysfunction that adversely affect renewal and bioenergetic support in diverse tissues. Constructing a model of how telomeres, stem cells and mitochondria interact with key molecules governing genome integrity, 'stemness' and metabolism provides a framework for how diverse factors contribute to ageing and age-related disorders.


Asunto(s)
Envejecimiento/patología , Mitocondrias/patología , Células Madre/patología , Telómero/patología , Animales , Genoma/genética , Sistema Hematopoyético/patología , Homeostasis/fisiología , Humanos , Mitocondrias/enzimología , Fenotipo , Telomerasa/genética , Telomerasa/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
9.
Nature ; 468(7324): 701-4, 2010 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-21124456

RESUMEN

The capacity to fine-tune cellular bioenergetics with the demands of stem-cell maintenance and regeneration is central to normal development and ageing, and to organismal survival during periods of acute stress. How energy metabolism and stem-cell homeostatic processes are coordinated is not well understood. Lkb1 acts as an evolutionarily conserved regulator of cellular energy metabolism in eukaryotic cells and functions as the major upstream kinase to phosphorylate AMP-activated protein kinase (AMPK) and 12 other AMPK-related kinases. Whether Lkb1 regulates stem-cell maintenance remains unknown. Here we show that Lkb1 has an essential role in haematopoietic stem cell (HSC) homeostasis. We demonstrate that ablation of Lkb1 in adult mice results in severe pancytopenia and subsequent lethality. Loss of Lkb1 leads to impaired survival and escape from quiescence of HSCs, resulting in exhaustion of the HSC pool and a marked reduction of HSC repopulating potential in vivo. Lkb1 deletion has an impact on cell proliferation in HSCs, but not on more committed compartments, pointing to context-specific functions for Lkb1 in haematopoiesis. The adverse impact of Lkb1 deletion on haematopoiesis was predominantly cell-autonomous and mTOR complex 1 (mTORC1)-independent, and involves multiple mechanisms converging on mitochondrial apoptosis and possibly downregulation of PGC-1 coactivators and their transcriptional network, which have critical roles in mitochondrial biogenesis and function. Thus, Lkb1 serves as an essential regulator of HSCs and haematopoiesis, and more generally, points to the critical importance of coupling energy metabolism and stem-cell homeostasis.


Asunto(s)
Ciclo Celular/fisiología , Metabolismo Energético , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Homeostasis , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas Activadas por AMP , Animales , Apoptosis , Proliferación Celular , Supervivencia Celular , Femenino , Eliminación de Gen , Hematopoyesis , Células Madre Hematopoyéticas/patología , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias/patología , Complejos Multiproteicos , Pancitopenia/genética , Fenotipo , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Proteínas/metabolismo , Análisis de Supervivencia , Serina-Treonina Quinasas TOR , Factores de Transcripción/metabolismo
11.
Circ Res ; 110(9): 1226-37, 2012 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-22539756

RESUMEN

Studies in humans and in mice have highlighted the importance of short telomeres and impaired mitochondrial function in driving age-related functional decline in the heart. Although telomere and mitochondrial dysfunction have been viewed mainly in isolation, recent studies in telomerase-deficient mice have provided evidence for an intimate link between these two processes. Telomere dysfunction induces a profound p53-dependent repression of the master regulators of mitochondrial biogenesis and function, peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α and PGC-1ß in the heart, which leads to bioenergetic compromise due to impaired oxidative phosphorylation and ATP generation. This telomere-p53-PGC mitochondrial/metabolic axis integrates many factors linked to heart aging including increased DNA damage, p53 activation, mitochondrial, and metabolic dysfunction and provides a molecular basis of how dysfunctional telomeres can compromise cardiomyocytes and stem cell compartments in the heart to precipitate cardiac aging.


Asunto(s)
Envejecimiento/genética , Enfermedades Cardiovasculares/genética , Mitocondrias Cardíacas/metabolismo , Acortamiento del Telómero , Telómero/metabolismo , Factores de Edad , Envejecimiento/patología , Animales , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Proteínas Portadoras/metabolismo , Metabolismo Energético , Proteínas de Choque Térmico/metabolismo , Humanos , Mitocondrias Cardíacas/patología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Proteínas de Unión al ARN , Transducción de Señal , Telomerasa/metabolismo , Telómero/ultraestructura , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
12.
Nat Cell Biol ; 26(4): 593-603, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38553595

RESUMEN

Loss of protein function is a driving force of ageing. We have identified peptidyl-prolyl isomerase A (PPIA or cyclophilin A) as a dominant chaperone in haematopoietic stem and progenitor cells. Depletion of PPIA accelerates stem cell ageing. We found that proteins with intrinsically disordered regions (IDRs) are frequent PPIA substrates. IDRs facilitate interactions with other proteins or nucleic acids and can trigger liquid-liquid phase separation. Over 20% of PPIA substrates are involved in the formation of supramolecular membrane-less organelles. PPIA affects regulators of stress granules (PABPC1), P-bodies (DDX6) and nucleoli (NPM1) to promote phase separation and increase cellular stress resistance. Haematopoietic stem cell ageing is associated with a post-transcriptional decrease in PPIA expression and reduced translation of IDR-rich proteins. Here we link the chaperone PPIA to the synthesis of intrinsically disordered proteins, which indicates that impaired protein interaction networks and macromolecular condensation may be potential determinants of haematopoietic stem cell ageing.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Proteínas Intrínsecamente Desordenadas/química , Ciclofilina A/genética , Ciclofilina A/metabolismo , Proteínas de Unión al ARN , Células Madre Hematopoyéticas/metabolismo
13.
Circulation ; 124(7): 806-13, 2011 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-21788586

RESUMEN

BACKGROUND: Oxidative stress and mitochondrial dysfunction are central mediators of cardiac dysfunction after ischemia/reperfusion. ATP binding cassette mitochondrial erythroid (ABC-me; ABCB10; mABC2) is a mitochondrial transporter highly induced during erythroid differentiation and predominantly expressed in bone marrow, liver, and heart. Until now, ABC-me function in heart was unknown. Several lines of evidence demonstrate that the yeast ortholog of ABC-me protects against increased oxidative stress. Therefore, ABC-me is a potential modulator of the outcome of ischemia/reperfusion in the heart. METHODS AND RESULTS: Mice harboring 1 functional allele of ABC-me (ABC-me(+/-)) were generated by replacing ABC-me exons 2 and 3 with a neomycin resistance cassette. Cardiac function was assessed with Langendorff perfusion and echocardiography. Under basal conditions, ABC-me(+/-) mice had normal heart structure, hemodynamic function, mitochondrial respiration, and oxidative status. However, after ischemia/reperfusion, the recovery of hemodynamic function was reduced by 50% in ABC-me(+/-) hearts as a result of impairments in both systolic and diastolic function. This reduction was associated with impaired mitochondrial bioenergetic function and with oxidative damage to both mitochondrial lipids and sarcoplasmic reticulum calcium ATPase after reperfusion. Treatment of ABC-me(+/-) hearts with the superoxide dismutase/catalase mimetic EUK-207 prevented oxidative damage to mitochondria and sarcoplasmic reticulum calcium ATPase and restored mitochondrial and cardiac function to wild-type levels after reperfusion. CONCLUSIONS: Inactivation of 1 allele of ABC-me increases the susceptibility to oxidative stress induced by ischemia/reperfusion, leading to increased oxidative damage to mitochondria and sarcoplasmic reticulum calcium ATPase and to impaired functional recovery. Thus, ABC-me is a novel gene that determines the ability to tolerate cardiac ischemia/reperfusion.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Mitocondrias/fisiología , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Estrés Oxidativo/genética , Recuperación de la Función/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Volumen Cardíaco/fisiología , Catalasa/metabolismo , Femenino , Predisposición Genética a la Enfermedad/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Mitocondrias/efectos de los fármacos , Mutagénesis Insercional , Contracción Miocárdica/efectos de los fármacos , Contracción Miocárdica/fisiología , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Compuestos Organometálicos/farmacología , Estrés Oxidativo/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Presión Ventricular/fisiología
14.
Cancers (Basel) ; 14(3)2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35159073

RESUMEN

The ubiquitin-proteasome pathway precisely controls the turnover of transcription factors in the nucleus, playing an important role in maintaining appropriate quantities of these regulatory proteins. The transcription factor c-MYC is essential for normal development and is a critical cancer driver. Despite being highly expressed in several tissues and malignancies, the c-MYC protein is also continuously targeted by the ubiquitin-proteasome pathway, which can either facilitate or inhibit c-MYC degradation. Deubiquitinating proteases can remove ubiquitin chains from target proteins and rescue them from proteasomal digestion. This study sought to determine novel elements of the ubiquitin-proteasome pathway that regulate c-MYC levels. We performed an overexpression screen with 41 human proteases to identify which deubiquitinases stabilize c-MYC. We discovered that the highly expressed Otubain-1 (OTUB1) protease increases c-MYC protein levels. Confirming its role in enhancing c-MYC activity, we found that elevated OTUB1 correlates with inferior clinical outcomes in the c-MYC-dependent cancer multiple myeloma, and overexpression of OTUB1 accelerates the growth of myeloma cells. In summary, our study identifies OTUB1 as a novel amplifier of the proto-oncogene c-MYC.

15.
Cancer Res Commun ; 2(12): 1693-1710, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36846090

RESUMEN

Proteasome inhibitors have become the standard of care for multiple myeloma (MM). Blocking protein degradation particularly perturbs the homeostasis of short-lived polypeptides such as transcription factors and epigenetic regulators. To determine how proteasome inhibitors directly impact gene regulation, we performed an integrative genomics study in MM cells. We discovered that proteasome inhibitors reduce the turnover of DNA-associated proteins and repress genes necessary for proliferation through epigenetic silencing. Specifically, proteasome inhibition results in the localized accumulation of histone deacetylase 3 (HDAC3) at defined genomic sites, which reduces H3K27 acetylation and increases chromatin condensation. The loss of active chromatin at super-enhancers critical for MM, including the super-enhancer controlling the proto-oncogene c-MYC, reduces metabolic activity and cancer cell growth. Epigenetic silencing is attenuated by HDAC3 depletion, suggesting a tumor-suppressive element of this deacetylase in the context of proteasome inhibition. In the absence of treatment, HDAC3 is continuously removed from DNA by the ubiquitin ligase SIAH2. Overexpression of SIAH2 increases H3K27 acetylation at c-MYC-controlled genes, increases metabolic output, and accelerates cancer cell proliferation. Our studies indicate a novel therapeutic function of proteasome inhibitors in MM by reshaping the epigenetic landscape in an HDAC3-dependent manner. As a result, blocking the proteasome effectively antagonizes c-MYC and the genes controlled by this proto-oncogene.


Asunto(s)
Cromatina , Mieloma Múltiple , Humanos , Inhibidores de Proteasoma/farmacología , Complejo de la Endopetidasa Proteasomal/metabolismo , Mieloma Múltiple/tratamiento farmacológico , Genes myc
16.
Proc Natl Acad Sci U S A ; 105(49): 19384-9, 2008 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-19052232

RESUMEN

The Tuberous Sclerosis Complex component, TSC1, functions as a tumor suppressor via its regulation of diverse cellular processes, particularly cell growth. TSC1 exists in a complex with TSC2 and functions primarily as a key negative regulator of mammalian target of rapamycin complex 1 (mTORC1) signaling and protein synthesis, although the TSC1/TSC2 complex also shows mTORC1-independent outputs to other pathways. Here, we explored the role of TSC1 in various aspects of stem cell biology and dissected the extent to which TSC1 functions are executed via mTORC1-dependent versus mTORC1-independent pathways. Using hematopoietic stem cells (HSCs) as a model system, we demonstrate that somatic deletion of TSC1 produces striking stem cell and derivative effector cell phenotypes characterized by increased HSC cell cycling, mobilization, marked progressive depletion, defective long-term repopulating potential, and hematopoietic lineage developmental aberrations. On the mechanistic level, we further establish that TSC1 regulation of HSC quiescence and long-term repopulating potential and hematopoietic lineage development is mediated through mTORC1 signaling. In contrast, TSC1 regulation of HSC mobilization is effected in an mTORC1-independent manner, and gene profiling and functional analyses reveals the actin-bundling protein FSCN1 as a key TSC1/TSC2 target in the regulation of HSC mobilization. Thus, TSC1 is a critical regulator of HSC self-renewal, mobilization, and multilineage development and executes these actions via both mTORC1-dependent and -independent pathways.


Asunto(s)
Movimiento Celular/fisiología , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/fisiología , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Médula Ósea/patología , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Diferenciación Celular/fisiología , División Celular/fisiología , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Complejos Multiproteicos , Fenotipo , Proteínas , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR , Factores de Transcripción/genética , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteína 2 del Complejo de la Esclerosis Tuberosa
17.
Proc Natl Acad Sci U S A ; 105(49): 19372-7, 2008 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-19050074

RESUMEN

Pancreas ductal adenocarcinoma (PDAC) is a highly lethal cancer that typically presents as advanced, unresectable disease. This invasive tendency, coupled with intrinsic resistance to standard therapies and genome instability, are major contributors to poor long-term survival. The genetic elements governing the invasive propensity of PDAC have not been well elucidated. Here, in the course of validating resident genes in highly recurrent and focal amplifications in PDAC, we have identified Rio Kinase 3 (RIOK3) as an amplified gene that alters cytoskeletal architecture as well as promotes pancreatic ductal cell migration and invasion. We determined that RIOK3 promotes its invasive activities through activation of the small G protein, Rac. This genomic and functional link to Rac signaling prompted a genome wide survey of other components of the Rho family network, revealing p21 Activated Kinase 4 (PAK4) as another amplified gene in PDAC tumors and cell lines. Like RIOK3, PAK4 promotes pancreas ductal cell motility and invasion. Together, the genomic and functional profiles establish the Rho family GTP-binding proteins as integral to the hallmark invasive nature of this lethal disease.


Asunto(s)
Carcinoma Ductal Pancreático/genética , Conductos Pancreáticos/fisiología , Neoplasias Pancreáticas/genética , Proteínas Serina-Treonina Quinasas/genética , Quinasas p21 Activadas/genética , Proteínas de Unión al GTP rho/genética , Animales , Carcinoma Ductal Pancreático/patología , Línea Celular Transformada , Movimiento Celular/fisiología , Regulación Neoplásica de la Expresión Génica , Genómica , Humanos , Ratones , Ratones Desnudos , Invasividad Neoplásica , Conductos Pancreáticos/citología , Neoplasias Pancreáticas/patología , Fenotipo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/fisiología , Quinasas p21 Activadas/metabolismo , Proteínas de Unión al GTP rho/metabolismo
18.
Metabolites ; 11(6)2021 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-34204343

RESUMEN

Studies in humans and model systems have established an important role of short telomeres in predisposing to liver fibrosis through pathways that are incompletely understood. Recent studies have shown that telomere dysfunction impairs cellular metabolism, but whether and how these metabolic alterations contribute to liver fibrosis is not well understood. Here, we investigated whether short telomeres change the hepatic response to metabolic stress induced by fructose, a sugar that is highly implicated in non-alcoholic fatty liver disease. We find that telomere shortening in telomerase knockout mice (TKO) imparts a pronounced susceptibility to fructose as reflected in the activation of p53, increased apoptosis, and senescence, despite lower hepatic fat accumulation in TKO mice compared to wild type mice with long telomeres. The decreased fat accumulation in TKO is mediated by p53 and deletion of p53 normalizes hepatic fat content but also causes polyploidy, polynuclearization, dysplasia, cell death, and liver damage. Together, these studies suggest that liver tissue with short telomers are highly susceptible to fructose and respond with p53 activation and liver damage that is further exacerbated when p53 is lost resulting in dysplastic changes.

19.
PLoS One ; 16(9): e0254557, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34473704

RESUMEN

The interaction of extracellular matrix (ECM) components with hepatic stellate cells (HSCs) is thought to perpetuate fibrosis by stimulating signaling pathways that drive HSC activation, survival and proliferation. Consequently, disrupting the interaction between ECM and HSCs is considered a therapeutical avenue although respective targets and underlying mechanisms remain to be established. Here we have interrogated the interaction between type VI collagen (CVI) and HSCs based on the observation that CVI is 10-fold upregulated during fibrosis, closely associates with HSCs in vivo and promotes cell proliferation and cell survival in cancer cell lines. We exposed primary rat HSCs and a rat hepatic stellate cell line (CFSC) to soluble CVI and determined the rate of proliferation, apoptosis and fibrogenesis in the absence of any additional growth factors. We find that CVI in nanomolar concentrations prevents serum starvation-induced apoptosis. This potent anti-apoptotic effect is accompanied by induction of proliferation and acquisition of a pronounced pro-fibrogenic phenotype characterized by increased α-smooth muscle actin, TGF-ß, collagen type I and TIMP-1 expression and diminished proteolytic MMP-13 expression. The CVI-HSC interaction can be disrupted with the monomeric α2(VI) and α3(VI) chains and abrogates the activating CVI effects. Further, functional relevant α3(VI)-derived 30 amino acid peptides lead to near-complete inhibition of the CVI effect. In conclusion, CVI serves as a potent mitogen and activating factor for HSCs. The antagonistic effects of the CVI monomeric chains and peptides point to linear peptide sequences that prevent activation of CVI receptors which may allow a targeted antifibrotic therapy.


Asunto(s)
Colágeno Tipo VI/metabolismo , Fibrosis/tratamiento farmacológico , Células Estrelladas Hepáticas/metabolismo , Cirrosis Hepática/tratamiento farmacológico , Péptidos/farmacología , Subunidades de Proteína/farmacología , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Fibrosis/metabolismo , Fibrosis/patología , Células Estrelladas Hepáticas/patología , Humanos , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Ratas , Transducción de Señal
20.
Cancers (Basel) ; 13(4)2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33671345

RESUMEN

Multiple myeloma and its precursor plasma cell dyscrasias affect 3% of the elderly population in the US. Proteasome inhibitors are an essential part of several standard drug combinations used to treat this incurable cancer. These drugs interfere with the main pathway of protein degradation and lead to the accumulation of damaged proteins inside cells. Despite promising initial responses, multiple myeloma cells eventually become drug resistant in most patients. The biology behind relapsed/refractory multiple myeloma is complex and poorly understood. Several studies provide evidence that in addition to the proteasome, mitochondrial proteases can also contribute to protein quality control outside of mitochondria. We therefore hypothesized that mitochondrial proteases might counterbalance protein degradation in cancer cells treated with proteasome inhibitors. Using clinical and experimental data, we found that overexpression of the mitochondrial matrix protease LonP1 (Lon Peptidase 1) reduces the efficacy of proteasome inhibitors. Some proteasome inhibitors partially crossinhibit LonP1. However, we show that the resistance effect of LonP1 also occurs when using drugs that do not block this protease, suggesting that LonP1 can compensate for loss of proteasome activity. These results indicate that targeting both the proteasome and mitochondrial proteases such as LonP1 could be beneficial for treatment of multiple myeloma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA