Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 63(15): 6616-6625, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38569100

RESUMEN

Four new compositionally complex perovskites with multiple (four or more) cations on the B site of the perovskites have been studied. The materials have the general formula La0.5Sr2.5(M)2O7-δ (M = Ti, Mn, Fe, Co, and Ni) and have been synthesized via conventional solid-state synthesis. The compounds are the first reported examples of compositionally complex n = 2 Ruddlesden-Popper perovskites. The structure and properties of the materials have been determined using powder X-ray diffraction, neutron diffraction, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and magnetometry. The materials are isostructural and adopt the archetypal I4/mmm space group with the following unit cell parameters: a ∼ 3.84 Å, and c ∼ 20.1 Å. The measured compositions from energy dispersive X-ray spectroscopy were La0.51(2)Sr2.57(7)Ti0.41(2)Mn0.41(2)Fe0.39(2)Co0.38(1)Ni0.34(1)O7-δ, La0.59(4)Sr2.29(23)Mn0.58(5)Fe0.56(6)Co0.55(6)Ni0.42(4)O7-δ, La0.54(2)Sr2.49(13)Mn0.41(2)Fe0.81(5)Co0.39(3)Ni0.36(3)O7-δ, and La0.53(4)Sr2.55(19)Mn0.67(6)Fe0.64(5)Co0.31(2)Ni0.30(3)O7-δ. No magnetic contribution is observed in the neutron diffraction data, and magnetometry indicates a spin glass transition at low temperatures.

2.
Sci Rep ; 14(1): 1142, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38212350

RESUMEN

MnAl(C) is a promising candidate as a rare earth free magnet. When processing MnAl(C) in laser powder bed fusion (L-PBF) the high cooling rates can retain the high temperature ε-phase which can then be annealed at low temperatures to yield the ferromagnetic τ-phase. However, MnAl(C) has been shown to be difficult to print using L-PBF and the material is prone to severe cracking. In this study, we have investigated how the addition of a graphene oxide (GO) coating on the powders can affect the processability of MnAl(C) and properties of the printed parts. MnAl(C) powders were coated with 0.2 wt.% GO using a wet-chemical process. The addition of GO reduced crack formation in the printed parts, and also influenced the degree of [Formula: see text] texture along the build direction. After printing, densities of 93% and 87% could be achieved for the reference and 0.2 wt.% GO, respectively. Furthermore, a 35% reduction of cracking was calculated from image analysis, comparing printed samples produced from coated and non-coated powders. Both powders formed mostly the ε-phase but some two-phase regions with a mix of γ- and ε-phase could be observed in the as-printed parts, but seemed to be more prominent in the uncoated reference samples and could also be linked to cracks. The τ-phase together with smaller amounts of secondary phases was obtained after heat treatment at 560 °C for 5 min for both samples. Vibrating sample magnetometry was used to measure the magnetic properties, the reference had a remanence of 33 Am2/kg and a coercivity of 139 kA/m, and the 0.2 wt.% GO sample showed a similar remanence of 30 Am2/kg and coercivity of 130 kA/m. These results show that GO coating is a viable method to reduce detrimental cracking in L-PBF MnAl without reducing the magnetic performance of the material.

3.
J Appl Crystallogr ; 57(Pt 2): 248-257, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38596740

RESUMEN

NdGa hydride and deuteride phases were prepared from high-quality NdGa samples and their structures characterized by powder and single-crystal X-ray diffraction and neutron powder diffraction. NdGa with the orthorhombic CrB-type structure absorbs hydrogen at hydrogen pressures ≤ 1 bar until reaching the composition NdGaH(D)1.1, which maintains a CrB-type structure. At elevated hydrogen pressure additional hydrogen is absorbed and the maximum composition recovered under standard temperature and pressure conditions is NdGaH(D)1.6 with the Cmcm LaGaH1.66-type structure. This structure is a threefold superstructure with respect to the CrB-type structure. The hydrogen atoms are ordered and distributed on three fully occupied Wyckoff positions corresponding to tetrahedral (4c, 8g) and trigonal-bipyramidal (8g) voids in the parent structure. The threefold superstructure is maintained in the H-deficient phases NaGaH(D)x until 1.6 ≥ x ≥ 1.2. At lower H concentrations, coinciding with the composition of the hydride obtained from hydrogenation at atmospheric pressure, the unit cell of the CrB-type structure is resumed. This phase can also display H deficiency, NdGaH(D)y (1.1 ≥ y ≥ 0.9), with H(D) exclusively situated in partially empty tetrahedral voids. The phase boundary between the threefold superstructure (LaGaH1.66 type) and the onefold structure (NdGaH1.1 type) is estimated on the basis of phase-composition isotherms and neutron powder diffraction to be x = 1.15.

4.
Adv Sci (Weinh) ; 11(16): e2307856, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38419373

RESUMEN

Metallic glasses exhibit unique mechanical properties. For metallic glass composites (MGC), composed of dispersed nanocrystalline phases in an amorphous matrix, these properties can be enhanced or deteriorated depending on the volume fraction and size distribution of the crystalline phases. Understanding the evolution of crystalline phases during devitrification of bulk metallic glasses upon heating is key to realizing the production of these composites. Here, results are presented from a combination of in situ small- and wide-angle X-ray scattering (SAXS and WAXS) measurements during heating of Zr-based metallic glass samples at rates ranging from 102 to 104 Ks-1 with a time resolution of 4ms. By combining a detailed analysis of scattering experiments with numerical simulations, for the first time, it is shown how the amount of oxygen impurities in the samples influences the early stages of devitrification and changes the dominant nucleation mechanism from homogeneous to heterogeneous. During melting, the oxygen rich phase becomes the dominant crystalline phase whereas the main phases dissolve. The approach used in this study is well suited for investigation of rapid phase evolution during devitrification, which is important for the development of MGC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA