Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38842459

RESUMEN

Fluorite mineral holds significant importance because of its optoelectronic properties and wide range of applications. Here, we report the successful exfoliation of bulk fluorite ore (calcium fluoride, CaF2) crystals into atomically thin two-dimensional fluoritene (2D CaF2) using a highly scalable liquid-phase exfoliation method. The microscopic and spectroscopy characterizations show the formation of (111) plane-oriented 2D CaF2 sheets with exfoliation-induced material strain due to bond breaking, leading to the changes in lattice parameter. Its potential role in electrocatalysis is further explored for deeper insight, and a probable mechanism is also discussed. The 2D CaF2 with long-term stability shows overpotential values of 670 and 770 mV vs RHE for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively, at 10 mA cm-2. Computational simulations demonstrate the unique "direct-indirect" band gap switching with odd and even numbers of layers. Current work offers new avenues for exploring the structural and electrochemical properties of 2D CaF2 and its potential applicability.

2.
Phys Chem Chem Phys ; 22(34): 19108-19119, 2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32808611

RESUMEN

Alkali and alkaline earth metal-ion batteries are currently among the most efficient electrochemical energy storage devices. However, their stability and safety performance are greatly limited when used with volatile organic liquid electrolytes. A solid state polymer electrolyte is a prospective solution even though poor ionic conductivity at room temperature remains a bottleneck. Here we propose the mixing of two similar polymer matrices, poly(dimethyl siloxane) and poly(ethylene oxide), to address this challenge. The resulting electrolyte matrix is denser and significantly improves room-temperature ionic conductivity. Ab initio analyses of the reaction between the cations and the polymers show that oxygen sites act as entrapment sites for the cations and that ionic conduction likely occurs through hopping between adjacent oxygen sites. Molecular dynamics simulations of the dynamics of both polymers and the dynamics of the polymer mix show that the more frequent and more pronounced molecular vibrations of the polymer mix are likely responsible for reducing the time between two consecutive oxygen entrapments, thereby speeding up the conduction process. This hypothesis is experimentally validated by the practically useful ionic conductivity (σ≈ 10-4 S cm-1 at 25 °C) and the improved safety parameters exhibited by a transparent flexible multi-cation (Li+, Na+ and Mg2+) conducting solid channel made up of the above mixed polymer system.

3.
ACS Appl Mater Interfaces ; 16(2): 2417-2427, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38171351

RESUMEN

Natural ores are abundant, cost-effective, and environmentally friendly. Ultrathin (2D) layers of a naturally abundant van der Waals mineral, Biotite, have been prepared in bulk via exfoliation. We report here that this 2D Biotene material has shown extraordinary Li-Na-ion battery anode properties with ultralong cycling stability. Biotene shows 302 and 141 mAh g-1 first cycle-specific charge capacity for Li- and Na-ion battery applications with ∼90% initial Coulombic efficiency. The electrode exhibits significantly extended cycling stability with ∼75% capacity retention after 4000 cycles even at higher current densities (500-2000 mA g-1). Further, density functional theory studies show the possible Li intercalation mechanism between the 2D Biotene layers. Our work brings new directions toward designing the next generation of metal-ion battery anodes.

4.
Adv Mater ; 33(44): e2101589, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34561916

RESUMEN

Hexagonal boron nitride (h-BN) has emerged as a strong candidate for two-dimensional (2D) material owing to its exciting optoelectrical properties combined with mechanical robustness, thermal stability, and chemical inertness. Super-thin h-BN layers have gained significant attention from the scientific community for many applications, including nanoelectronics, photonics, biomedical, anti-corrosion, and catalysis, among others. This review provides a systematic elaboration of the structural, electrical, mechanical, optical, and thermal properties of h-BN followed by a comprehensive account of state-of-the-art synthesis strategies for 2D h-BN, including chemical exfoliation, chemical, and physical vapor deposition, and other methods that have been successfully developed in recent years. It further elaborates a wide variety of processing routes developed for doping, substitution, functionalization, and combination with other materials to form heterostructures. Based on the extraordinary properties and thermal-mechanical-chemical stability of 2D h-BN, various potential applications of these structures are described.

5.
Nanoscale ; 12(3): 1790-1800, 2020 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-31895391

RESUMEN

Green hydrogen production is a vital requirement of the upcoming hydrogen fuel-based locomotion and economy. Water electrolysis facilitated by electricity derived from renewable sources and direct solar-to-hydrogen conversion centred on photochemical and photoelectrochemical water splitting is a promising pathway for sustainable hydrogen production. All these methods require a highly active noble metal catalyst to make the water-splitting process more energy-efficient and in order to make it economical, metal-free hydrogen evolution catalysts such as graphene nanoplatelets (GNPs) are essential. Herein, we report the effect of a range of functionalizations on the catalytic properties of graphene nanoplatelets (GNPs) for the hydrogen evolution reaction (HER). We also account for the effect of functionalization on the strength of the electrical double layer formation on the surface of functionalized GNPs. It is observed that the catalytic activity and the electrical double layer strength are inversely related to each other. Our first-principles-based density functional theoretical (DFT) modelling unravels the origin of the observed electrocatalytic activity and its trend and the strength of the electrical double layers in terms of free energy changes during the ion absorption/desorption events on the electrode surface. Based on our observations, minimizing the electrical double layer strength is identified as an approach to improve the catalytic performance of the catalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA