RESUMEN
Several lines of evidence suggest that stress induces the neurovascular dysfunction associated with increased blood-brain barrier (BBB) permeability, which could be an important pathology linking stress and psychiatric disorders, including major depressive disorder (MDD). However, the detailed mechanism resulting in BBB dysfunction associated in the pathophysiology of MDD still remains unclear. Herein, we demonstrate the role of vascular endothelial growth factor (VEGF), a key mediator of vascular angiogenesis and BBB permeability, in stress-induced BBB dysfunction and depressive-like behavior development. We implemented an animal model of depression, chronic restraint stress (RS) in BALB/c mice, and found that the BBB permeability was significantly increased in chronically stressed mice. Immunohistochemical and electron microscopic observations revealed that increased BBB permeability was associated with both paracellular and transcellular barrier alterations in the brain endothelial cells. Pharmacological inhibition of VEGF receptor 2 (VEGFR2) using a specific monoclonal antibody (DC101) prevented chronic RS-induced BBB permeability and anhedonic behavior. Considered together, these results indicate that VEGF/VEGFR2 plays a crucial role in the pathogenesis of depression by increasing the BBB permeability, and suggest that VEGFR2 inhibition could be a potential therapeutic strategy for the MDD subtype associated with BBB dysfunction.
Asunto(s)
Encefalopatías , Trastorno Depresivo Mayor , Animales , Ratones , Barrera Hematoencefálica/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Células Endoteliales/metabolismo , Trastorno Depresivo Mayor/metabolismo , Depresión , Encefalopatías/patología , Ratones Endogámicos BALB C , Permeabilidad Capilar/fisiologíaRESUMEN
Remyelination is a regenerative process that restores the lost neurological function and partially depends on oligodendrocyte differentiation. Differentiation of oligodendrocytes spontaneously occurs after demyelination, depending on the cell intrinsic mechanisms. By combining a loss-of-function genomic screen with a web-resource-based candidate gene identification approach, we identified that dimethylarginine dimethylaminohydrolase 1 (DDAH1) is a novel regulator of oligodendrocyte differentiation. Silencing DDAH1 in oligodendrocytes prevented the expression of myelin basic protein in mouse oligodendrocyte culture with the change in expression of genes annotated with oligodendrocyte development. DDAH1 inhibition attenuated spontaneous remyelination in a cuprizone-induced demyelinated mouse model. Conversely, increased DDAH1 expression enhanced remyelination capacity in experimental autoimmune encephalomyelitis. These results provide a novel therapeutic option for demyelinating diseases by modulating DDAH1 activity.
Asunto(s)
Remielinización , Amidohidrolasas , Animales , Diferenciación Celular , Sistema Nervioso Central , Cuprizona/toxicidad , Ratones , Ratones Endogámicos C57BL , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Remielinización/fisiologíaRESUMEN
Creatine is synthesized by S-adenosylmethionine:guanidinoacetate N-methyltransferase (GAMT), and the creatine/phosphocreatine shuttle system mediated by creatine kinase (CK) is essential for storage and regeneration of high-energy phosphates in cells. Although the importance of this system in brain development is evidenced by the hereditary nature of creatine deficiency syndrome, the spatiotemporal cellular expression patterns of GAMT in developing brain remain unknown. Here we show that two waves of high GAMT expression occur in developing mouse brain. The first involves high expression in mitotic cells in the ventricular zone of the brain wall and the external granular layer of the cerebellum at the embryonic and neonatal stages. The second was initiated by striking up-regulation of GAMT in oligodendrocytes during the second and third postnatal weeks (i.e., the active myelination stage), which continued to adulthood. Distinct temporal patterns were also evident in other cell types. GAMT was highly expressed in perivascular pericytes and smooth muscle cells after birth, but not in adults. In neurons, GAMT levels were low to moderate in neuroblasts residing in the ventricular zone, increased during the second postnatal week when active dendritogenesis and synaptogenesis occur, and decreased to very low levels thereafter. Moderate levels were observed in astrocytes throughout development. The highly regulated, cell type-dependent expression of GAMT suggests that local creatine biosynthesis plays critical roles in certain phases of neural development. In accordance with this idea, we observed increased CK expression in differentiating neurons; this would increase creatine/phosphocreatine shuttle system activity, which might reflect increased energy demand.
Asunto(s)
Creatina/metabolismo , Guanidinoacetato N-Metiltransferasa/metabolismo , Neuronas/metabolismo , S-Adenosilmetionina/metabolismo , Animales , Encéfalo/crecimiento & desarrollo , Glicina/metabolismo , Metiltransferasas/metabolismo , Ratones Endogámicos C57BL , Fosfocreatina/metabolismoRESUMEN
This is the second report of a series paper, which reports molecular mechanisms underlying the occurrence of pruning spine phase after rapid spinogenesis phase in neonates and young infant in the primate brain. We performed microarray analysis between the peak of spine numbers [postnatal 3 months (M)] and spine pruning (postnatal 6M) in prefrontal, inferior temporal, and primary visual cortices of the common marmoset (Callithrix jacchus). The pruning phase is not clearly defined in rodents but is in primates including the marmoset. The differentially expressed genes between 3M and 6M in all three cortical areas were selected by two-way analysis of variance. The list of selected genes was analyzed by canonical pathway analysis using "Ingenuity Pathway Analysis of complex omics data" (IPA; Ingenuity Systems, Qiagen, Hilden, Germany). In this report, we discuss these lists of genes for the glutamate receptor system, G-protein-coupled neuromodulator system, protector of normal tissue and mitochondria, and reelin. (1) Glutamate is a common neurotransmitter. Its receptors AMPA1, GRIK1, and their scaffold protein DLG4 decreased as spine numbers decreased. Instead, GRIN3 (NMDA receptor) increased, suggesting that strong NMDA excitatory currents may be required for a single neuron to receive sufficient net synaptic activity in order to compensate for the decrease in synapse. (2) Most of the G protein-coupled receptor genes (e.g., ADRA1D, HTR2A, HTR4, and DRD1) in the selected list were upregulated at 6M. The downstream gene ROCK2 in these receptor systems plays a role of decreasing synapses, and ROCK2 decreased at 6M. (3) Synaptic phagosytosis by microglia with complement and other cytokines could cause damage to normal tissue and mitochondria. SOD1, XIAP, CD46, and CD55, which play protective roles in normal tissue and mitochondria, showed higher expression at 6M than at 3M, suggesting that normal brain tissue is more protected at 6M. (4) Reelin has an important role in cortical layer formation. In addition, RELN and three different pathways of reelin were expressed at 6M, suggesting that new synapse formation decreased at that age. Moreover, if new synapses were formed, their positions were free and probably dependent on activity.
Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Corteza Cerebral/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Mitocondrias/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neurotransmisores/fisiología , Receptores de Glutamato/genética , Serina Endopeptidasas/metabolismo , Sinapsis , Animales , Animales Recién Nacidos , Callithrix , Corteza Cerebral/crecimiento & desarrollo , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteína Reelina , Maduración SexualRESUMEN
The synapse number and the related dendritic spine number in the cerebral cortex of primates shows a rapid increase after birth. Depending on the brain region and species, the number of synapses reaches a peak before adulthood, and pruning takes place after this peak (overshoot-type synaptic formation). Human mental disorders, such as autism and schizophrenia, are hypothesized to be a result of either too weak or excessive pruning after the peak is reached. Thus, it is important to study the molecular mechanisms underlying overshoot-type synaptic formation, particularly the pruning phase. To examine the molecular mechanisms, we used common marmosets (Callithrix jacchus). Microarray analysis of the marmoset cortex was performed in the ventrolateral prefrontal, inferior temporal, and primary visual cortices, where changes in the number of dendritic spines have been observed. The spine number of all the brain regions above showed a peak at 3 months (3 M) after birth and gradually decreased (e.g., at 6 M and in adults). In this study, we focused on genes that showed differential expression between ages of 3 M and 6 M and on the differences whose fold change (FC) was greater than 1.2. The selected genes were subjected to canonical pathway analysis, and in this study, we describe axon guidance signaling, which had high plausibility. The results showed a large number of genes belonging to subsystems within the axon guidance signaling pathway, macrophages/immune system, glutamate system, and others. We divided the data and discussion of these results into 2 papers, and this is the first paper, which deals with the axon guidance signaling and macrophage/immune system. Other systems will be described in the next paper. Many components of subsystems within the axon guidance signaling underwent changes in gene expression from 3 M to 6 M so that the synapse/dendritic spine number would decrease at 6 M. Thus, axon guidance signaling probably contributes to the decrease in synapse/dendritic spine number at 6 M, the phenomenon that fits the overshoot-type synaptic formation in primates. Microglial activity (evaluated by quantifying AIF1 expression) and gene expression of molecules that modulate microglia, decreased at 6 M, just like the synapse/dendritic spine number. Thus, although microglial activity is believed to be related to phagocytosis of synapses/dendritic spines, microglial activity alone cannot explain how pruning was accelerated in the pruning phase. On the other hand, expression of molecules that tag synapses/dendritic spines as a target of phagocytosis by microglia (e.g., complement components) increased at 6 M, suggesting that these tagging proteins may be involved in the acceleration of pruning during the pruning phase.
Asunto(s)
Axones , Callithrix/genética , Corteza Cerebral/metabolismo , Espinas Dendríticas , Perfilación de la Expresión Génica , Maduración Sexual , Transducción de Señal , Sinapsis , Animales , Callithrix/crecimiento & desarrollo , Callithrix/inmunología , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/inmunología , ADN Complementario/genética , Femenino , Masculino , Análisis de Secuencia por Matrices de OligonucleótidosRESUMEN
Alterations in the experience-dependent and autonomous elaboration of neural circuits are assumed to underlie autism spectrum disorder (ASD), though it is unclear what synaptic traits are responsible. Here, utilizing a valproic acid-induced ASD marmoset model, which shares common molecular features with idiopathic ASD, we investigate changes in the structural dynamics of tuft dendrites of upper-layer pyramidal neurons and adjacent axons in the dorsomedial prefrontal cortex through two-photon microscopy. In model marmosets, dendritic spine turnover is upregulated, and spines are generated in clusters and survived more often than in control marmosets. Presynaptic boutons in local axons, but not in commissural long-range axons, demonstrate hyperdynamic turnover in model marmosets, suggesting alterations in projection-specific plasticity. Intriguingly, nasal oxytocin administration attenuates clustered spine emergence in model marmosets. Enhanced clustered spine generation, possibly unique to certain presynaptic partners, may be associated with ASD and be a potential therapeutic target.
Asunto(s)
Callithrix , Modelos Animales de Enfermedad , Plasticidad Neuronal , Oxitocina , Animales , Oxitocina/metabolismo , Masculino , Sinapsis/metabolismo , Espinas Dendríticas/metabolismo , Espinas Dendríticas/patología , Espinas Dendríticas/efectos de los fármacos , Trastorno del Espectro Autista/metabolismo , Trastorno Autístico/metabolismo , Trastorno Autístico/patología , Corteza Prefrontal/metabolismo , Corteza Prefrontal/patología , Corteza Prefrontal/efectos de los fármacos , Células Piramidales/metabolismo , Células Piramidales/patología , Ácido Valproico/farmacología , Terminales Presinápticos/metabolismo , Femenino , Axones/metabolismoRESUMEN
In the central nervous system, astrocytes enable appropriate synapse function through glutamate clearance from the synaptic cleft; however, it remains unclear how astrocytic glutamate transporters function at peri-synaptic contact. Here, we report that Down syndrome cell adhesion molecule (DSCAM) in Purkinje cells controls synapse formation and function in the developing cerebellum. Dscam-mutant mice show defects in CF synapse translocation as is observed in loss of function mutations in the astrocytic glutamate transporter GLAST expressed in Bergmann glia. These mice show impaired glutamate clearance and the delocalization of GLAST away from the cleft of parallel fibre (PF) synapse. GLAST complexes with the extracellular domain of DSCAM. Riluzole, as an activator of GLAST-mediated uptake, rescues the proximal impairment in CF synapse formation in Purkinje cell-selective Dscam-deficient mice. DSCAM is required for motor learning, but not gross motor coordination. In conclusion, the intercellular association of synaptic and astrocyte proteins is important for synapse formation and function in neural transmission.
Asunto(s)
Neuroglía , Neuronas , Animales , Ratones , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Cerebelo/metabolismo , Ácido Glutámico/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Células de Purkinje/metabolismo , Sinapsis/metabolismoRESUMEN
Peripheral nerves conducting motor and somatosensory signals in vertebrate consist of myelinated and unmyelinated axons. In vitro myelination culture, generated by co-culturing Schwann cells (SCs) and dorsal root ganglion (DRG) neurons, is an indispensable tool for modeling physiological and pathological conditions of the peripheral nervous system (PNS). This technique allows researchers to overexpress or downregulate molecules investigated in neurons or SCs to evaluate the effect of such molecules on myelination. In vitro myelination experiments are usually time-consuming and labor-intensive to perform. Here we report an optimized protocol for in vitro myelination using DRG explant culture. We found that our in vitro myelination using DRG explant (IVMDE) culture not only achieves myelination with higher efficiency than conventional in vitro myelination methods, but also can be used to observe Remak bundle and non-myelinating SCs, which were unrecognizable in conventional methods. Because of these characteristics, IVMDE may be useful in modeling PNS diseases, including Charcot Marie Tooth disease (CMT), in vitro. These results suggest that IVMDE may achieve a condition more similar to peripheral nerve myelination observed during physiological development.
Asunto(s)
Ganglios Espinales , Sistema Nervioso Periférico , Células de Schwann , Axones , Diferenciación CelularRESUMEN
Duchenne muscular dystrophy (DMD) is a muscle disorder caused by DMD mutations and is characterized by neurobehavioural comorbidities due to dystrophin deficiency in the brain. The lack of Dp140, a dystrophin short isoform, is clinically associated with intellectual disability and autism spectrum disorders (ASDs), but its postnatal functional role is not well understood. To investigate synaptic function in the presence or absence of brain Dp140, we utilized two DMD mouse models, mdx23 and mdx52 mice, in which Dp140 is preserved or lacking, respectively. ASD-like behaviours were observed in pups and 8-week-old mdx52 mice lacking Dp140. Paired-pulse ratio of excitatory postsynaptic currents, glutamatergic vesicle number in basolateral amygdala neurons, and glutamatergic transmission in medial prefrontal cortex-basolateral amygdala projections were significantly reduced in mdx52 mice compared to those in wild-type and mdx23 mice. ASD-like behaviour and electrophysiological findings in mdx52 mice were ameliorated by restoration of Dp140 following intra-cerebroventricular injection of antisense oligonucleotide drug-induced exon 53 skipping or intra-basolateral amygdala administration of Dp140 mRNA-based drug. Our results implicate Dp140 in ASD-like behaviour via altered glutamatergic transmission in the basolateral amygdala of mdx52 mice.
Asunto(s)
Distrofina , Distrofia Muscular de Duchenne , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Distrofina/genética , Distrofina/metabolismo , Exones , Ratones , Distrofia Muscular de Duchenne/genética , Conducta SocialRESUMEN
Autism spectrum disorder (ASD) is a multifactorial disorder with characteristic synaptic and gene expression changes. Early intervention during childhood is thought to benefit prognosis. Here, we examined the changes in cortical synaptogenesis, synaptic function, and gene expression from birth to the juvenile stage in a marmoset model of ASD induced by valproic acid (VPA) treatment. Early postnatally, synaptogenesis was reduced in this model, while juvenile-age VPA-treated marmosets showed increased synaptogenesis, similar to observations in human tissue. During infancy, synaptic plasticity transiently increased and was associated with altered vocalization. Synaptogenesis-related genes were downregulated early postnatally. At three months of age, the differentially expressed genes were associated with circuit remodeling, similar to the expression changes observed in humans. In summary, we provide a functional and molecular characterization of a non-human primate model of ASD, highlighting its similarity to features observed in human ASD.
Asunto(s)
Trastorno del Espectro Autista/fisiopatología , Modelos Animales de Enfermedad , Potenciales Evocados/fisiología , Neuronas/fisiología , Corteza Prefrontal/fisiología , Transmisión Sináptica/fisiología , Animales , Trastorno del Espectro Autista/inducido químicamente , Trastorno del Espectro Autista/genética , Callithrix , Espinas Dendríticas/fisiología , Estimulación Eléctrica , Perfilación de la Expresión Génica/métodos , Humanos , Plasticidad Neuronal/genética , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Técnicas de Placa-Clamp/métodos , Corteza Prefrontal/citología , Corteza Prefrontal/metabolismo , Ácido ValproicoRESUMEN
The pulvinar, the largest thalamic nucleus in the primate brain, has connections with a variety of cortical areas and is involved in many aspects of higher brain functions. Among cortico-pulvino-cortical systems, the connection between the middle temporal area (MT) and the pulvinar has been thought to contribute significantly to complex motion recognition. Recently, the common marmoset (Callithrix jacchus), has become a valuable model for a variety of neuroscience studies, including visual neuroscience and translational research of neurological and psychiatric disorders. However, information on projections from MT to the pulvinar in the marmoset brain is scant. We addressed this deficiency by injecting sensitive anterograde viral tracers into MT to examine the distribution of labeled terminations in the pulvinar. The injection sites were placed retinotopically according to visual field coordinates mapped by optical intrinsic imaging. All injections produced anterograde terminal labeling, which was densest in the medial nucleus of the inferior pulvinar (PIm), sparser in the central nucleus of the inferior pulvinar, and weakest in the lateral pulvinar. Within each subnucleus, terminations formed separate retinotopic fields. Most labeled terminals were small but these comingled with a few large terminals, distributed mainly in the dorsomedial part of the PIm. Our results further delineate the organization of projections from MT to the pulvinar in the marmoset as forming parallel complex networks, which may differentially contribute to motion processing. It is interesting that the densest projections from MT target the PIm, the subnucleus recently reported to preferentially receive direct retinal projections.
Asunto(s)
Pulvinar , Corteza Visual , Animales , Mapeo Encefálico , Callithrix , Corteza Cerebral , Núcleos Talámicos , Vías VisualesRESUMEN
The organization of F-actin in the ventricular system has been reported to display pronounced regional differences with respect to shape, size, and development. However, the real roles played by F-actin in these cells cannot be understood unless the precise localization of F-actin is defined. In the present study, we used double-fluorescence labeling to further examine the localization of F-actin in the ependymocytes and its spatial relation to the other two cytoskeletal components, microtubules and intermediate filaments. Then we converted fluorescence signals for F-actin to peroxidase/DAB reaction products by use of a phalloidin-based FITC-anti-FITC system. This detection technique provided an overview of the distribution of F-actin in the ependymocytes at the ultrastructural level, and has been proven to be helpful in correlating light and electron microscopic investigations.
Asunto(s)
Actinas/metabolismo , Epéndimo/metabolismo , 3,3'-Diaminobencidina , Animales , Plexo Coroideo/citología , Plexo Coroideo/metabolismo , Plexo Coroideo/ultraestructura , Epéndimo/citología , Epéndimo/ultraestructura , Femenino , Fluoresceína-5-Isotiocianato , Colorantes Fluorescentes , Filamentos Intermedios/metabolismo , Microscopía Electrónica , Microscopía Fluorescente , Microtúbulos/metabolismo , Peroxidasas , Ratas , Ratas Sprague-Dawley , Médula Espinal/citología , Médula Espinal/metabolismo , Médula Espinal/ultraestructuraRESUMEN
Mutations in the d-3-phosphoglycerate dehydrogenase (PHGDH; EC 1.1.1.95) gene, which encodes an enzyme involved in de novol-serine biosynthesis, are shown to cause human serine deficiency disorder. This disorder has been characterized by severe neurological symptoms including congenital microcephaly and psychomotor retardation. Our previous work demonstrated that targeted disruption of mouse Phgdh leads to a marked decrease in serine and glycine, severe growth retardation of the central nervous system, and lethality after embryonic day 13.5. To clarify how a serine deficiency causes neurodevelopmental defects, we characterized changes in metabolites, gene expression and morphological alterations in the spinal cord of Phgdh knockout mice. BeadChip microarray analysis revealed significant dysregulation of genes involved in the cell cycle. Ingenuity Pathway Analysis also revealed a significant perturbation of regulatory networks that operate in the cell cycle progression. Moreover, morphological examinations of the knockout spinal cord demonstrated a marked deficit in dorsal horn neurons. Radial glia cells, native neural stem/progenitor cells, accumulated in the dorsal ventricular zone, but they did not proceed to a G(0)-like quiescent state. The present integrative study provides in vivo evidence that normal cell cycle progression and subsequent neurogenesis of radial glia cells are severely impaired by serine deficiency.
Asunto(s)
Enfermedades Metabólicas , Neurogénesis/genética , Fosfoglicerato-Deshidrogenasa/genética , Serina/deficiencia , Médula Espinal , Animales , Modelos Animales de Enfermedad , Embrión de Mamíferos , Transportador 1 de Aminoácidos Excitadores/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Enfermedades Metabólicas/embriología , Enfermedades Metabólicas/genética , Enfermedades Metabólicas/patología , Ratones , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Fosfoglicerato-Deshidrogenasa/deficiencia , Médula Espinal/embriología , Médula Espinal/patología , Médula Espinal/fisiopatología , Tubulina (Proteína)/metabolismoRESUMEN
In the adult rodent brain, constitutive neurogenesis occurs in two restricted regions, the subventricular zone (SVZ) of the lateral ventricle and the subgranular zone of the hippocampal dentate gyrus, where multipotent neural stem/progenitor cells generate new neurons. Using Western blotting and immunohistochemistry for established markers, we demonstrated that the expression of 3-phosphoglycerate dehydrogenase (Phgdh), an enzyme involved in de novo synthesis of l-serine, was upregulated in the SVZ. The expression was selective to cells having morphological features and expressing markers of astrocyte-like primary neural stem cells (type B cells) and their progeny, actively proliferating progenitors (type C cells). By contrast, Phgdh protein expression was virtually absent in committed neuronal precursors (type A cells) derived from type C cells. High levels of Phgdh were also expressed by glial tube cells located in the rostral migratory stream (RMS). Interestingly, ensheathment of type A cells by these Phgdh-expressing cells was persistent in the SVZ and RMS, suggesting that l-serine mediates trophic support for type A cells via these glial cells. In vitro neurosphere assays confirmed that growth-factor-responsive, transient amplifying neural progenitors in the SVZ, but not differentiated neurons, expressed Phgdh. In the aged brain, a decline in Phgdh expression was evident in type B and C cells of the SVZ. These observations support the notion that availability of l-serine within neural stem/progenitor cells may be a critical factor for neurogenesis in developing and adult brain.
Asunto(s)
Hipocampo/enzimología , Fosfoglicerato-Deshidrogenasa/metabolismo , Nicho de Células Madre/enzimología , Regulación hacia Arriba , Células Madre Adultas/enzimología , Envejecimiento , Animales , Western Blotting , Células Cultivadas , Hipocampo/citología , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Neurogénesis , Neuroglía/enzimología , Neuronas/enzimología , Fosfoglicerato-Deshidrogenasa/genéticaRESUMEN
Amyotrophic lateral sclerosis (ALS) is an adult-onset neurological disease characterized by the selective degeneration of motor neurons leading to paralysis and immobility. Missense mutations in the gene coding for the Cu2+/Zn2+ superoxide dismutase 1 (SOD1) accounts for 15-20% of familial ALS, and mice overexpressing ALS-linked SOD1 mutants have been frequently used as an animal model for ALS. Degeneration of motor neurons in ALS progresses in a manner called "dying back", in which the degeneration of synapses and axons precedes the loss of cell bodies. Phosphorylation of collapsin response mediator protein 2 (CRMP2) is implicated in the progression of neuronal/axonal degeneration of different etiologies. To evaluate the role of CRMP2 phosphorylation in ALS pathogenesis, we utilized CRMP2 S522A knock-in (CRMP2ki/ki) mice, in which the serine residue 522 was homozygously replaced with alanine and thereby making CRMP2 no longer phosphorylatable by CDK5 or GSK3B. We found that the CRMP2ki/ki/SOD1G93A mice showed delay in the progression of the motor phenotype compared to their SOD1G93-Tg littermates. Histological analysis revealed that the CRMP2ki/ki/SOD1G93A mice retained more intact axons and NMJs than their SOD1G93A-Tg littermates. These results suggest that the phosphorylation of CRMP2 may contribute to the axonal degeneration of motor neurons in ALS.
Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Axones/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Neuronas Motoras/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Esclerosis Amiotrófica Lateral/genética , Animales , Modelos Animales de Enfermedad , Ratones Transgénicos , Unión Neuromuscular/patología , Fosforilación , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Sinapsis/metabolismoRESUMEN
Copy number increase or decrease of certain dosage-sensitive genes may cause genetic diseases with distinct phenotypes, conceptually termed genomic disorders. The most common cause of Pelizaeus-Merzbacher disease (PMD), an X-linked hypomyelinating leukodystrophy, is genomic duplication encompassing the entire proteolipid protein 1 (PLP1) gene. Although the exact molecular and cellular mechanisms underlying PLP1 duplication, which causes severe hypomyelination in the central nervous system, remain largely elusive, PLP1 overexpression is likely the fundamental cause of this devastating disease. Here, we investigated if adeno-associated virus-mediated (AAV-mediated) gene-specific suppression may serve as a potential cure for PMD by correcting quantitative aberrations in gene products. We developed an oligodendrocyte-specific Plp1 gene suppression therapy using artificial microRNA under the control of human CNP promoter in a self-complementary AAV (scAAV) platform. A single direct brain injection achieved widespread oligodendrocyte-specific Plp1 suppression in the white matter of WT mice. AAV treatment in Plp1-transgenic mice, a PLP1 duplication model, ameliorated cytoplasmic accumulation of Plp1, preserved mature oligodendrocytes from degradation, restored myelin structure and gene expression, and improved survival and neurological phenotypes. Together, our results provide evidence that AAV-mediated gene suppression therapy can serve as a potential cure for PMD resulting from PLP1 duplication and possibly for other genomic disorders.
Asunto(s)
MicroARNs/farmacología , MicroARNs/uso terapéutico , Enfermedad de Pelizaeus-Merzbacher/terapia , Animales , Secuencia de Bases , Encéfalo/patología , Muerte Celular , Modelos Animales de Enfermedad , Dosificación de Gen , Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Ratones Transgénicos , Proteína Proteolipídica de la Mielina/genética , Proteína Proteolipídica de la Mielina/metabolismo , Oligodendroglía , Enfermedad de Pelizaeus-Merzbacher/genética , FenotipoRESUMEN
Little is known about the cerebral distribution and clearance of guanidinoacetate (GAA), the accumulation of which induces convulsions. The purpose of the present study was to identify creatine transporter (CRT)-mediated GAA transport and to clarify its cerebral expression and role in GAA efflux transport at the blood-cerebrospinal fluid barrier (BCSFB). CRT mediated GAA transport with a K(m) value of 269 microM/412 microM which was approximately 10-fold greater than that of CRT for creatine. There was wide and distinct cerebral expression of CRT and localization of CRT on the brush-border membrane of choroid plexus epithelial cells. The in vivo elimination clearance of GAA from the CSF was 13-fold greater than that of d-mannitol reflecting bulk flow of the CSF. This process was partially inhibited by creatine. The characteristics of GAA uptake by isolated choroid plexus and an immortalized rat choroid plexus epithelial cell line (TR-CSFB cells) used as an in vitro model of BCSFB are partially consistent with those of CRT. These results suggest that CRT plays a role in the cerebral distribution of GAA and GAA uptake by the choroid plexus. However, in the presence of endogenous creatine in the CSF, CRT may make only a limited contribution to the GAA efflux transport at the BCSFB.
Asunto(s)
Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Glicina/análogos & derivados , Proteínas de Transporte de Membrana/metabolismo , Animales , Transporte Biológico , Línea Celular , Líquido Cefalorraquídeo/química , Líquido Cefalorraquídeo/metabolismo , Plexo Coroideo/metabolismo , Convulsivantes/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/ultraestructura , Glicina/metabolismo , Humanos , Immunoblotting , Inmunohistoquímica , Hibridación in Situ , Masculino , Ratones , Microvellosidades/metabolismo , Ratas , Ratas Wistar , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Xenopus laevisRESUMEN
Neural activity in the middle temporal (MT) area is modulated by the direction and speed of motion of visual stimuli. The area is buried in a sulcus in the macaque, but exposed to the cortical surface in the marmoset, making the marmoset an ideal animal model for studying MT function. To better understand the details of the roles of this area in cognition, underlying anatomical connections need to be clarified. Because most anatomical tracing studies in marmosets have used retrograde tracers, the axonal projections remain uncharacterized. In order to examine axonal projections from MT, we utilized adeno-associated viral (AAV) tracers, which work as anterograde tracers by expressing either green or red fluorescent protein in infected neurons. AAV tracers were injected into three sites in MT based on retinotopy maps obtained via in vivo optical intrinsic signal imaging. Brains were sectioned and divided into three series, one for fluorescent image scanning and two for myelin and Nissl substance staining to identify specific brain areas. Overall projection patterns were similar across the injections. MT projected to occipital visual areas V1, V2, V3 (VLP) and V4 (VLA) and surrounding areas in the temporal cortex including MTC (V4T), MST, FST, FSTv (PGa/IPa) and TE3. There were also projections to the dorsal visual pathway, V3A (DA), V6 (DM) and V6A, the intraparietal areas AIP, LIP, MIP, frontal A4ab and the prefrontal cortex, A8aV and A8C. There was a visuotopic relationship with occipital visual areas. In a marmoset in which two tracer injections were made, the projection targets did not overlap in A8aV and AIP, suggesting topographic projections from different parts of MT. Most of these areas are known to send projections back to MT, suggesting that they are reciprocally connected with it.
RESUMEN
BACKGROUND: The brain of the common marmoset (Callithrix jacchus) is becoming a popular non-human primate model in neuroscience research. Because its brain fiber connectivity is still poorly understood, it is necessary to collect and present connection and trajectory data using tracers to establish a marmoset brain connectivity database. NEW METHOD: To visualize projections and trajectories of axons, brain section images were reconstructed in 3D by registering them to the corresponding block-face brain images taken during brain sectioning. During preprocessing, autofluorescence of the tissue was reduced by applying independent component analysis to a set of fluorescent images taken using different filters. RESULTS: The method was applied to a marmoset dataset after a tracer had been injected into an auditory belt area to fluorescently label axonal projections. Cortical and subcortical connections were clearly reconstructed in 3D. The registration error was estimated to be smaller than 200 µm. Evaluation tests on ICA-based autofluorescence reduction showed a significant improvement in signal and background separation. COMPARISON WITH EXISTING METHODS: Regarding the 3D reconstruction error, the present study shows an accuracy comparable to previous studies using MRI and block-face images. Compared to serial section two-photon tomography, an advantage of the proposed method is that it can be combined with standard histological techniques. The images of differently processed brain sections can be integrated into the original ex vivo brain shape. CONCLUSIONS: The proposed method allows creating 3D axonal projection maps overlaid with brain area annotations based on the histological staining results of the same animal.
Asunto(s)
Mapeo Encefálico , Encéfalo/citología , Encéfalo/diagnóstico por imagen , Callithrix/anatomía & histología , Imagenología Tridimensional , Vías Nerviosas/diagnóstico por imagen , Animales , Imagen por Resonancia MagnéticaRESUMEN
Development of oligodendrocytes, myelin-forming glia in the central nervous system (CNS), proceeds on a protracted schedule. Specification of oligodendrocyte progenitor cells (OPCs) begins early in development, whereas their terminal differentiation occurs at late embryonic and postnatal periods. However, for oligodendrocytes in the cerebellum, the developmental origins and the molecular machinery to control these distinct steps remain unclear. By in vivo fate mapping and immunohistochemical analyses, we obtained evidence that the majority of oligodendrocytes in the cerebellum originate from the Olig2-expressing neuroepithelial domain in the ventral rhombomere 1 (r1), while about 6% of cerebellar oligodendrocytes are produced in the cerebellar ventricular zone. Furthermore, to elucidate the molecular determinants that regulate their development, we analyzed mice in which the transcription factor Sox9 was specifically ablated from the cerebellum, ventral r1 and caudal midbrain by means of the Cre/loxP recombination system. This resulted in a delay in the birth of OPCs and subsequent developmental aberrations in these cells in the Sox9-deficient mice. In addition, we observed altered proliferation of OPCs, resulting in a decrease in oligodendrocyte numbers that accompanied an attenuation of the differentiation and an increased rate of apoptosis. Results from in vitro assays using oligodendrocyte-enriched cultures further supported our observations from in vivo experiments. These data suggest that Sox9 participates in the development of oligodendrocytes in the cerebellum, by regulating the timing of their generation, proliferation, differentiation and survival.