Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nature ; 565(7738): 206-208, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30598547

RESUMEN

Recent exoplanet studies have revealed that the orbital planes of planets are not always aligned with one another or with the equatorial plane of the central star. The misalignment has been ascribed to gravitational scattering by giant planets and/or companion stars1-3 or to fly-bys in stellar cluster environments4. Alternatively, the misalignment could be natal: that is, such planets were born in a warped protostellar disk5,6. Warped disk structures have been reported in some transition disks and protoplanetary disks7,8, but not in the earlier stages of protostar evolution, although such a possibility is suggested by outflow morphology9,10. Here we report millimetre-wavelength dust continuum observations of the young embedded protostar IRAS 04368+2557 in the protostellar core L1527 at a distance11 of 137 parsecs; the protostar's disk is almost edge-on12-16. The inner and outer parts of the disk have slightly different orbital planes, connected at 40 to 60 astronomical units from the star, but the disk has point symmetry with respect to the position of the protostar. We interpret it as a warped disk that is rotationally supported. Because there is no evidence for a companion source17,18, the warped structure must be due to either anisotropic accretion of gas with different rotational axes, or misalignment of the rotation axis of the disk with the magnetic field direction.

2.
Nature ; 507(7490): 78-80, 2014 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-24522533

RESUMEN

IRAS 04368+2557 is a solar-type (low-mass) protostar embedded in a protostellar core (L1527) in the Taurus molecular cloud, which is only 140 parsecs away from Earth, making it the closest large star-forming region. The protostellar envelope has a flattened shape with a diameter of a thousand astronomical units (1 AU is the distance from Earth to the Sun), and is infalling and rotating. It also has a protostellar disk with a radius of 90 AU (ref. 6), from which a planetary system is expected to form. The interstellar gas, mainly consisting of hydrogen molecules, undergoes a change in density of about three orders of magnitude as it collapses from the envelope into the disk, while being heated from 10 kelvin to over 100 kelvin in the mid-plane, but it has hitherto not been possible to explore changes in chemical composition associated with this collapse. Here we report that the unsaturated hydrocarbon molecule cyclic-C3H2 resides in the infalling rotating envelope, whereas sulphur monoxide (SO) is enhanced in the transition zone at the radius of the centrifugal barrier (100 ± 20 AU), which is the radius at which the kinetic energy of the infalling gas is converted to rotational energy. Such a drastic change in chemistry at the centrifugal barrier was not anticipated, but is probably caused by the discontinuous infalling motion at the centrifugal barrier and local heating processes there.

3.
J Phys Chem A ; 117(39): 9831-9, 2013 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-23789783

RESUMEN

We have studied the abundances of the (13)C isotopic species of C3S and C4H in the cold molecular cloud, Taurus Molecular Cloud-1 (Cyanopolyyne Peak), by radioastronomical observations of their rotational emission lines. The CCCS/(13)CCCS and CCCS/C(13)CCS ratios are determined to be >206 and 48 ± 15, respectively. The CC(13)CS line is identified with the aid of laboratory microwave spectroscopy, and the range of the CCCS/CC(13)CS ratio is found to be from 30 to 206. The abundances of at least two (13)C isotopic species of C3S are thus found to be different. Similarly, it is found that the abundances of the four (13)C isotopic species of C4H are not equivalent. The CCCCH/(13)CCCCH, CCCCH/C(13)CCCH, CCCCH/CC(13)CCH, and CCCCH/CCC(13)CH ratios are evaluated to be 141 ± 44, 97 ± 27, 82 ± 15, and 118 ± 23, respectively. Here the errors denote 3 times the standard deviation. These results will constrain the formation pathways of C3S and C4H, if the nonequivalence is caused during the formation processes of these molecules. The exchange reactions after the formation of these two molecules may also contribute to the nonequivalence. In addition, we have confirmed that the (12)C/(13)C ratio of some species are significantly higher than the interstellar elemental (12)C/(13)C ratio of 60-70. The observations of the (13)C isotopic species provide us with rich information on chemical processes in cold interstellar clouds.

4.
Chem Rev ; 113(12): 8981-9015, 2013 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-24156530
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA