Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biol Pharm Bull ; 47(5): 930-940, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38692871

RESUMEN

The coronavirus disease 2019 (COVID-19) is caused by the etiological agent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19, with the recurrent epidemics of new variants of SARS-CoV-2, remains a global public health problem, and new antivirals are still required. Some cholesterol derivatives, such as 25-hydroxycholesterol, are known to have antiviral activity against a wide range of enveloped and non-enveloped viruses, including SARS-CoV-2. At the entry step of SARS-CoV-2 infection, the viral envelope fuses with the host membrane dependent of viral spike (S) glycoproteins. From the screening of cholesterol derivatives, we found a new compound 26,27-dinorcholest-5-en-24-yne-3ß,20-diol (Nat-20(S)-yne) that inhibited the SARS-CoV-2 S protein-dependent membrane fusion in a syncytium formation assay. Nat-20(S)-yne exhibited the inhibitory activities of SARS-CoV-2 pseudovirus entry and intact SARS-CoV-2 infection in a dose-dependent manner. Among the variants of SARS-CoV-2, inhibition of infection by Nat-20(S)-yne was stronger in delta and Wuhan strains, which predominantly invade into cells via fusion at the plasma membrane, than in omicron strains. The interaction between receptor-binding domain of S proteins and host receptor ACE2 was not affected by Nat-20(S)-yne. Unlike 25-hydroxycholesterol, which regulates various steps of cholesterol metabolism, Nat-20(S)-yne inhibited only de novo cholesterol biosynthesis. As a result, plasma membrane cholesterol content was substantially decreased in Nat-20(S)-yne-treated cells, leading to inhibition of SARS-CoV-2 infection. Nat-20(S)-yne having a new mechanism of action may be a potential therapeutic candidate for COVID-19.


Asunto(s)
Antivirales , COVID-19 , Colesterol , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , SARS-CoV-2/efectos de los fármacos , Antivirales/farmacología , Humanos , COVID-19/virología , Colesterol/metabolismo , Células Vero , Chlorocebus aethiops , Glicoproteína de la Espiga del Coronavirus/metabolismo , Animales , Internalización del Virus/efectos de los fármacos , Betacoronavirus/efectos de los fármacos , Pandemias , Tratamiento Farmacológico de COVID-19 , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/virología , Enzima Convertidora de Angiotensina 2/metabolismo , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/virología
2.
Mol Pharmacol ; 101(5): 322-333, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35273080

RESUMEN

Ceramide is a bioactive sphingolipid that mediates ionizing radiation- and chemotherapy-induced apoptosis. Neocarzinostatin (NCS) is a genotoxic anti-cancer drug that induces apoptosis in response to DNA double-strand breaks (DSBs) through ataxia telangiectasia mutated (ATM) activation. However, the involvement of ceramide in NCS-evoked nuclear events such as DSB-activated ATM has not been clarified. Here, we found that nuclear ceramide increased by NCS-mediated apoptosis through the enhanced assembly of ATM and the meiotic recombination 11/double-strand break repair/Nijmengen breakage syndrome 1 (MRN) complex proteins in human lymphoblastoid L-39 cells. NCS induced an increase of ceramide production through activation of neutral sphingomyelinase (nSMase) and suppression of sphingomyelin synthase (SMS) upstream of DSB-mediated ATM activation. In ATM-deficient lymphoblastoid AT-59 cells compared with L-39 cells, NCS treatment showed a decrease of apoptosis even though ceramide increase and DSBs were observed. Expression of wild-type ATM, but not the kinase-dead mutant ATM, in AT-59 cells increased NCS-induced apoptosis despite similar ceramide accumulation. Interestingly, NCS increased ceramide content in the nucleus through nSMase activation and SMS suppression and promoted colocalization of ceramide with phosphorylated ATM and foci of MRN complex. Inhibition of ceramide generation by the overexpression of SMS suppressed NCS-induced apoptosis through the inhibition of ATM activation and assembly of the MRN complex. In addition, inhibition of ceramide increased by the nSMase inhibitor GW4869 prevented NCS-mediated activation of the ATM. Therefore, our findings suggest the involvement of the nuclear ceramide with ATM activation in NCS-mediated apoptosis. SIGNIFICANCE STATEMENT: This study demonstrates that regulation of ceramide with neutral sphingomyelinase and sphingomyelin synthase in the nucleus in double-strand break-mimetic agent neocarzinostatin (NCS)-induced apoptosis. This study also showed that ceramide increase in the nucleus plays a role in NCS-induced apoptosis through activation of the ataxia telangiectasia mutated/meiotic recombination 11/double-strand break repair/Nijmengen breakage syndrome 1 complex in human lymphoblastoid cells.


Asunto(s)
Ataxia Telangiectasia , Cinostatina , Apoptosis/genética , Ataxia Telangiectasia/genética , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ceramidas/farmacología , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Humanos , Proteínas Serina-Treonina Quinasas , Esfingomielina Fosfodiesterasa/genética , Esfingomielina Fosfodiesterasa/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Cinostatina/farmacología
3.
J Biol Chem ; 297(5): 101338, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34688657

RESUMEN

The lipid molecule ceramide is transported from the endoplasmic reticulum to the Golgi apparatus for sphingomyelin production via the ceramide transport protein (CERT), encoded by CERT1. Hyperphosphorylation of CERT's serine-repeat motif (SRM) decreases its functionality. Some forms of inherited intellectual disability (ID) have been associated with a serine-to-leucine substitution in the SRM (S132L mutation) and a glycine-to-arginine substitution outside the SRM (G243R mutation) in CERT; however, it is unclear if mutations outside the SRM disrupt the control of CERT functionality. In the current investigation, we identified a new CERT1 variant (dupAA) in a patient with mild ID that resulted from a frameshift at the C-terminus of CERT1. However, familial analysis revealed that the dupAA variant was not associated with ID, allowing us to utilize it as a disease-matched negative control for CERT1 variants that are associated with ID. Biochemical analysis showed that G243R and S132L, but not dupAA, impair SRM hyperphosphorylation and render the CERT variants excessively active. Additionally, both S132L and G243R mutations but not dupAA caused the proteins to be distributed in a punctate subcellular manner. On the basis of these findings, we infer that the majority of ID-associated CERT variants may impair SRM phosphorylation-dependent repression, resulting in an increase in sphingomyelin production concurrent with CERT subcellular redistribution.


Asunto(s)
Discapacidad Intelectual/enzimología , Mutación Missense , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de Proteínas , Esfingomielinas/biosíntesis , Sustitución de Aminoácidos , Humanos , Discapacidad Intelectual/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Esfingomielinas/genética
4.
Int J Mol Sci ; 23(4)2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35216212

RESUMEN

Lipid transfer proteins (LTPs) are recognized as key players in the inter-organelle trafficking of lipids and are rapidly gaining attention as a novel molecular target for medicinal products. In mammalian cells, ceramide is newly synthesized in the endoplasmic reticulum (ER) and converted to sphingomyelin in the trans-Golgi regions. The ceramide transport protein CERT, a typical LTP, mediates the ER-to-Golgi transport of ceramide at an ER-distal Golgi membrane contact zone. About 20 years ago, a potent inhibitor of CERT, named (1R,3S)-HPA-12, was found by coincidence among ceramide analogs. Since then, various ceramide-resembling compounds have been found to act as CERT inhibitors. Nevertheless, the inevitable issue remains that natural ligand-mimetic compounds might directly bind both to the desired target and to various undesired targets that share the same natural ligand. To resolve this issue, a ceramide-unrelated compound named E16A, or (1S,2R)-HPCB-5, that potently inhibits the function of CERT has recently been developed, employing a series of in silico docking simulations, efficient chemical synthesis, quantitative affinity analysis, protein-ligand co-crystallography, and various in vivo assays. (1R,3S)-HPA-12 and E16A together provide a robust tool to discriminate on-target effects on CERT from off-target effects. This short review article will describe the history of the development of (1R,3S)-HPA-12 and E16A, summarize other CERT inhibitors, and discuss their possible applications.


Asunto(s)
Transporte Biológico/fisiología , Ceramidas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Humanos , Ligandos
5.
Int J Mol Sci ; 23(7)2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35409383

RESUMEN

The ceramide transport protein (CERT) delivers ceramide from the endoplasmic reticulum (ER) to the Golgi apparatus, where ceramide is converted to sphingomyelin (SM). The function of CERT is regulated in two distinct phosphorylation-dependent events: multiple phosphorylations in a serine-repeat motif (SRM) and phosphorylation of serine 315 residue (S315). Pharmacological inhibition of SM biosynthesis results in an increase in SRM-dephosphorylated CERT, which serves as an activated form, and an enhanced phosphorylation of S315, which augments the binding of CERT to ER-resident VAMP-associated protein (VAP), inducing the full activation of CERT to operate at the ER-Golgi membrane contact sites (MCSs). However, it remains unclear whether the two phosphorylation-dependent regulatory events always occur coordinately. Here, we describe that hyperosmotic stress induces S315 phosphorylation without affecting the SRM-phosphorylation state. Under hyperosmotic conditions, the binding of CERT with VAP-A is enhanced in an S315 phosphorylation-dependent manner, and this increased binding occurs throughout the ER rather than restrictedly at the ER-Golgi MCSs. Moreover, we found that de novo synthesis of SM with very-long acyl chains preferentially increases via a CERT-independent mechanism under hyperosmotic-stressed cells, providing an insight into a CERT-independent ceramide transport pathway for de novo synthesis of SM.


Asunto(s)
Proteínas Portadoras , Ceramidas , Transporte Biológico , Proteínas Portadoras/metabolismo , Ceramidas/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas , Serina/metabolismo , Esfingomielinas/metabolismo
6.
Int J Mol Sci ; 23(23)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36499025

RESUMEN

The obligate intracellular bacterium Chlamydia trachomatis is the major causative agent of bacterial sexually transmitted diseases worldwide. In infected cells, the ceramide transport protein (CERT) is recruited to inclusions, where C. trachomatis replicates using host-synthesized ceramide. The ceramide is converted to sphingomyelin (SM) by a chlamydial infection-dependent SM synthesis (cidSM-synthesis) pathway, which occurs even in the absence of the SM synthases (SMS)-1 and -2 of host cells. The ceramide mimetic compound (1R,3S)-HPA-12 and the nonmimetic compound E16A, both of which are potent inhibitors of CERT, repressed the proliferation of C. trachomatis in HeLa cells. Unexpectedly, (1R,3R)-HPA-12, a ceramide mimetic compound that lacks CERT inhibitory activity, also exhibited potent anti-chlamydial activity. Using endogenous SMS-knockout mutant HeLa cells, we revealed that (1R,3R)-HPA-12 mildly inhibited cidSM-synthesis. In addition, LC-MS analysis revealed that (1R,3R)-HPA-12 is converted to a phosphocholine-conjugated metabolite in an infection-dependent manner. Imaging analysis with a fluorescent analog of ceramide suggested that cidSM-synthesis occurs in the bacterial bodies and/or inclusions. Collectively, these results suggested that (1R,3R)-HPA-12 exerts its anti-chlamydia activity not only as an inhibitor of cidSM-synthesis, but also via putative toxic effects of its phosphocholine adduct, which is most likely produced by the cidSM-synthesis route.


Asunto(s)
Ceramidas , Esfingomielinas , Humanos , Esfingomielinas/metabolismo , Ceramidas/farmacología , Ceramidas/metabolismo , Células HeLa , Fosforilcolina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Chlamydia trachomatis/metabolismo
7.
Int J Mol Sci ; 24(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36613459

RESUMEN

Peracetic acid (PAA) disinfectants are effective against a wide range of pathogenic microorganisms, including bacteria, fungi, and viruses. Several studies have shown the efficacy of PAA against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); however, its efficacy in SARS-CoV-2 variants and the molecular mechanism of action of PAA against SARS-CoV-2 have not been investigated. SARS-CoV-2 infection depends on the recognition and binding of the cell receptor angiotensin-converting enzyme 2 (ACE2) via the receptor-binding domain (RBD) of the spike protein. Here, we demonstrated that PAA effectively suppressed pseudotyped virus infection in the Wuhan type and variants, including Delta and Omicron. Similarly, PAA reduced the authentic viral load of SARS-CoV-2. Computational analysis suggested that the hydroxyl radicals produced by PAA cleave the disulfide bridges in the RBD. Additionally, the PAA treatment decreased the abundance of the Wuhan- and variant-type spike proteins. Enzyme-linked immunosorbent assay showed direct inhibition of RBD-ACE2 interactions by PAA. In conclusion, the PAA treatment suppressed SARS-CoV-2 infection, which was dependent on the inhibition of the interaction between the spike RBD and ACE2 by inducing spike protein destabilization. Our findings provide evidence of a potent disinfection strategy against SARS-CoV-2.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Humanos , Ácido Peracético/farmacología , Enzima Convertidora de Angiotensina 2 , SARS-CoV-2 , Unión Proteica
8.
J Proteome Res ; 20(5): 2812-2822, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33719461

RESUMEN

ABO blood antigens on the human red blood cell membrane as well as different cells in various human tissues have been thoroughly studied. Anti-A and -B antibodies of IgM are present in serum/plasma, but blood group-specific glyco-antigens have not been extensively described. In this study, we performed comprehensive and quantitative serum glycomic analyses of various glycoconjugates and free oligosaccharides in all blood groups. Our comprehensive glycomic approach revealed that blood group-specific antigens in serum/plasma are predominantly present on glycosphingolipids on lipoproteins rather than glycoproteins. Expression of the ABO antigens on glycosphingolipids depends not only on blood type but also on secretor status. Blood group-specific glycans in serum/plasma were classified as type I, whereas those on RBCs had different structures including hexose and hexosamine residues. Analysis of free oligosaccharides revealed that low-molecular-weight blood group-specific glycans, commonly containing lacto-N-difucotetraose, were expressed in serum/plasma according to blood group. Furthermore, comprehensive glycomic analysis in human cerebrospinal fluid showed that many kinds of free oligosaccharides were highly expressed, and low-molecular-weight blood group-specific glycans, which existed in plasma from the same individuals, were present. Our findings provide the first evidence for low-molecular-weight blood group-specific glycans in both serum/plasma and cerebrospinal fluid.


Asunto(s)
Antígenos de Grupos Sanguíneos , Glicómica , Glicoproteínas , Humanos , Oligosacáridos , Polisacáridos
9.
J Virol ; 94(23)2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-32938759

RESUMEN

Some plus-stranded RNA viruses generate double-membrane vesicles (DMVs), one type of the membrane replication factories, as replication sites. Little is known about the lipid components involved in the biogenesis of these vesicles. Sphingomyelin (SM) is required for hepatitis C virus (HCV) replication, but the mechanism of SM involvement remains poorly understood. SM biosynthesis starts in the endoplasmic reticulum (ER) and gives rise to ceramide, which is transported from the ER to the Golgi by the action of ceramide transfer protein (CERT), where it can be converted to SM. In this study, inhibition of SM biosynthesis, either by using small-molecule inhibitors or by knockout (KO) of CERT, suppressed HCV replication in a genotype-independent manner. This reduction in HCV replication was rescued by exogenous SM or ectopic expression of the CERT protein, but not by ectopic expression of nonfunctional CERT mutants. Observing low numbers of DMVs in stable replicon cells treated with a SM biosynthesis inhibitor or in CERT-KO cells transfected with either HCV replicon or with constructs that drive HCV protein production in a replication-independent system indicated the significant importance of SM to DMVs. The degradation of SM of the in vitro-isolated DMVs affected their morphology and increased the vulnerability of HCV RNA and proteins to RNase and protease treatment, respectively. Poliovirus, known to induce DMVs, showed decreased replication in CERT-KO cells, while dengue virus, known to induce invaginated vesicles, did not. In conclusion, these findings indicated that SM is an essential constituent of DMVs generated by some plus-stranded RNA viruses.IMPORTANCE Previous reports assumed that sphingomyelin (SM) is essential for HCV replication, but the mechanism was unclear. In this study, we showed for the first time that SM and ceramide transfer protein (CERT), which is in the SM biosynthesis pathway, are essential for the biosynthesis of double-membrane vesicles (DMVs), the sites of viral replication. Low numbers of DMVs were observed in CERT-KO cells transfected with replicon RNA or with constructs that drive HCV protein production in a replication-independent system. HCV replication was rescued by ectopic expression of the CERT protein, but not by CERT mutants, that abolishes the binding of CERT to vesicle-associated membrane protein-associated protein (VAP) or phosphatidylinositol 4-phosphate (PI4P), indicating new roles for VAP and PI4P in HCV replication. The biosynthesis of DMVs has great importance to replication by a variety of plus-stranded RNA viruses. Understanding of this process is expected to facilitate the development of diagnosis and antivirus.


Asunto(s)
Proteínas Portadoras/metabolismo , Hepacivirus/metabolismo , Esfingomielinas/metabolismo , Replicación Viral/fisiología , Transporte Biológico , Proteínas Portadoras/genética , Línea Celular , Ceramidas , Retículo Endoplásmico/metabolismo , Técnicas de Inactivación de Genes , Aparato de Golgi/metabolismo , Células HEK293 , Hepatitis C/virología , Humanos , Fosfatos de Fosfatidilinositol , ARN Viral/genética
10.
Neuroradiology ; 63(7): 1079-1085, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33410949

RESUMEN

PURPOSE: Endovascular treatment of unruptured intracranial aneurysms may increase cerebral microbleeds (CMBs) in postprocedural T2*-weighted MRIs, which may be a risk for future intracerebral hemorrhage. This study examined the characteristics of postprocedural CMBs and the factors that cause their increase. METHODS: The patients who underwent endovascular treatment for unruptured intracranial aneurysms from April 2016 to February 2018 were retrospectively analyzed. Treatment techniques for endovascular treatment included simple coiling, balloon-assisted coiling, stent-assisted coiling, or flow diverter placement. To evaluate the increase in CMBs, a head MRI including diffusion-weighted imaging and T2*-weighted MRIs was performed on the preprocedural day; the first postprocedural day; and at 1, 3, and 6 months after the procedure. RESULTS: Among the 101 aneurysms that were analyzed, 38 (37.6%) showed the appearance of new CMBs. In the multivariate analysis examining the causes of the CMB increases, chronic kidney disease, a higher number of preprocedural CMBs, and a higher number of diffusion-weighted imaging-positive lesions on the first postprocedural day were independent risk factors. Furthermore, a greater portion of the increased CMBs was found in cortical and subcortical lesions of the treated vascular perfusion area within 1 month after the procedure. CONCLUSION: In endovascular treatment for unruptured intracranial aneurysms, CMBs tended to increase in patients with small vessel disease before the procedure, and it was also implicated in hemorrhagic changes after periprocedural microinfarction.


Asunto(s)
Embolización Terapéutica , Procedimientos Endovasculares , Aneurisma Intracraneal , Hemorragia Cerebral/diagnóstico por imagen , Hemorragia Cerebral/etiología , Embolización Terapéutica/efectos adversos , Procedimientos Endovasculares/efectos adversos , Humanos , Aneurisma Intracraneal/diagnóstico por imagen , Aneurisma Intracraneal/terapia , Estudios Retrospectivos , Resultado del Tratamiento
11.
Lipids Health Dis ; 20(1): 24, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33648494

RESUMEN

BACKGROUND: Dietary sphingolipids have various biofunctions, including skin barrier improvement and anti-inflammatory and anti-carcinoma properties. Long-chain bases (LCBs), the essential backbones of sphingolipids, are expected to be important for these bioactivities, and they vary structurally between species. Given these findings, however, the absorption dynamics of each LCB remain unclear. METHODS: In this study, five structurally different LCBs were prepared from glucosylceramides (GlcCers) with LCB 18:2(4E,8Z);2OH and LCB 18:2(4E,8E);2OH moieties derived from konjac tuber (Amorphophallus konjac), from GlcCers with an LCB 18(9Me):2(4E,8E);2OH moiety derived from Tamogi mushroom (Pleurotus cornucopiae var. citrinopileatus), and from ceramide 2-aminoethyphosphonate with LCB 18:3(4E,8E,10E);2OH moiety and LCB 18(9Me):3(4E,8E,10E);2OH moiety derived from giant scallop (Mizuhopecten yessoensis), and their absorption percentages and metabolite levels were analyzed using a lymph-duct-cannulated rat model via liquid chromatography tandem mass spectrometry (LC/MS/MS) with a multistage fragmentation method. RESULTS: The five orally administered LCBs were absorbed and detected in chyle (lipid-containing lymph) as LCBs and several metabolites including ceramides, hexosylceramides, and sphingomyelins. The absorption percentages of LCBs were 0.10-1.17%, depending on their structure. The absorption percentage of LCB 18:2(4E,8Z);2OH was the highest (1.17%), whereas that of LCB 18:3(4E,8E,10E);2OH was the lowest (0.10%). The amount of sphingomyelin with an LCB 18:2(4E,8Z);2OH moiety in chyle was particularly higher than sphingomyelins with other LCB moieties. CONCLUSIONS: Structural differences among LCBs, particularly geometric isomerism at the C8-C9 position, significantly affected the absorption percentages and ratio of metabolites. This is the first report to elucidate that the absorption and metabolism of sphingolipids are dependent on their LCB structure. These results could be used to develop functional foods that are more readily absorbed.


Asunto(s)
Tracto Gastrointestinal/metabolismo , Linfa/metabolismo , Esfingolípidos/metabolismo , Esfingomielinas/metabolismo , Animales , Ceramidas/química , Ceramidas/metabolismo , Cromatografía Liquida , Suplementos Dietéticos , Tracto Gastrointestinal/efectos de los fármacos , Humanos , Linfa/efectos de los fármacos , Pleurotus/genética , Ratas , Esfingolípidos/química , Esfingolípidos/genética , Esfingomielinas/química , Espectrometría de Masas en Tándem
12.
Skin Pharmacol Physiol ; 34(5): 246-252, 2021.
Artículo en Zh | MEDLINE | ID: mdl-33915532

RESUMEN

Sphingomyelin (SM) is a constituent of cellular membranes, while ceramides (Cer) produced from SM on plasma membranes serve as a lipid mediator that regulates cell proliferation, differentiation, and apoptosis. In the skin, SM also is a precursor of Cer, an important constituent of epidermal permeability barrier. We investigated the role of epidermal SM synthase (SMS)2, an isoform of SMS, which modulates SM and Cer levels on plasma membranes. Although SMS2-knockout (SMS2-KO) mice were not neonatal lethal, an ichthyotic phenotype with epidermal hyperplasia and hyperkeratosis was evident at birth, which persisted until 2 weeks of age. These mice showed abnormal lamellar body morphology and secretion, and abnormal extracellular lamellar membranes in the stratum corneum. These abnormalities were no longer evident by 4 weeks of age in SMS2-KO mice. Our study suggests that (1) exposure to a dry terrestrial environment initiates compensatory responses, thereby normalizing epidermal ichthyotic abnormalities and (2) that a nonlethal gene abnormality can cause an ichthyotic skin phenotype.


Asunto(s)
Cuerpos Lamelares , Transferasas (Grupos de Otros Fosfatos Sustitutos) , Animales , Epidermis , Ratones , Ratones Noqueados , Transferasas (Grupos de Otros Fosfatos Sustitutos)/deficiencia , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética
13.
Proc Natl Acad Sci U S A ; 113(28): 7834-9, 2016 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-27342861

RESUMEN

Lipid membrane curvature plays important roles in various physiological phenomena. Curvature-regulated dynamic membrane remodeling is achieved by the interaction between lipids and proteins. So far, several membrane sensing/sculpting proteins, such as Bin/amphiphysin/Rvs (BAR) proteins, are reported, but there remains the possibility of the existence of unidentified membrane-deforming proteins that have not been uncovered by sequence homology. To identify new lipid membrane deformation proteins, we applied liposome-based microscopic screening, using unbiased-darkfield microscopy. Using this method, we identified phospholipase Cß1 (PLCß1) as a new candidate. PLCß1 is well characterized as an enzyme catalyzing the hydrolysis of phosphatidylinositol-4,5-bisphosphate (PIP2). In addition to lipase activity, our results indicate that PLCß1 possessed the ability of membrane tubulation. Lipase domains and inositol phospholipids binding the pleckstrin homology (PH) domain of PLCß1 were not involved, but the C-terminal sequence was responsible for this tubulation activity. Computational modeling revealed that the C terminus displays the structural homology to the BAR domains, which is well known as a membrane sensing/sculpting domain. Overexpression of PLCß1 caused plasma membrane tubulation, whereas knockdown of the protein reduced the number of caveolae and induced the evagination of caveolin-rich membrane domains. Taken together, our results suggest a new function of PLCß1: plasma membrane remodeling, and in particular, caveolae formation.


Asunto(s)
Caveolas/fisiología , Fosfolipasa C beta/metabolismo , Animales , Liposomas , Ratones , Ratones Endogámicos C57BL , Células 3T3 Swiss
14.
Nihon Ronen Igakkai Zasshi ; 56(3): 331-335, 2019.
Artículo en Japonés | MEDLINE | ID: mdl-31366754

RESUMEN

A 79-year-old woman came to us because of sudden onset of dysarthria. She had taken apixaban due to her non-valvular atrial fibrillation. A neurological examination revealed mild facial palsy of her right side, and magnetic resonance imaging showed acute brain infarction at the left frontal lobe. There were no stenotic lesions on intracranial or extracranial magnetic resonance angiography, and she was diagnosed with cardioembolic stroke. Intravenous infusion of heparin and edaravone was initiated, and her neurological symptoms improved. However, she gradually developed jaundice and anemia. Gastro-intestinal bleeding was not observed, and her blood test met the diagnostic criteria for hemolytic anemia. Because both the direct Coombs test and cold agglutinin were positive, she was diagnosed with mixed-type autoimmune hemolytic anemia. Although her serum hemoglobin level decreased to 7.0 g/dl on the 12th hospital day, her anemia gradually improved after steroidal therapy with transfusion. It was revealed that she had shown mild anemia (hemoglobin: 9.2-10.9 g/dl) and hyperbilirubinemia (total bilirubin: 1.8-2.6 mg/dl) for 6 months. Therefore, her latent autoimmune hemolytic anemia became activated with the occurrence of cardioembolic stroke. Autoimmune hemolytic anemia might have promoted cardiac thrombus formation despite the administration of an anticoagulant in this case. It should be noted that autoimmune hemolytic anemia can develop as thrombotic disease. In the present case, autoimmune hemolytic anemia was diagnosed based on the development of cardioembolic stroke.


Asunto(s)
Anemia Hemolítica Autoinmune/diagnóstico , Accidente Cerebrovascular/complicaciones , Anciano , Anemia Hemolítica Autoinmune/complicaciones , Anemia Hemolítica Autoinmune/tratamiento farmacológico , Femenino , Humanos
15.
FASEB J ; 31(4): 1301-1322, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27492925

RESUMEN

We identified a novel, nontoxic mushroom protein that specifically binds to a complex of sphingomyelin (SM), a major sphingolipid in mammalian cells, and cholesterol (Chol). The purified protein, termed nakanori, labeled cell surface domains in an SM- and Chol-dependent manner and decorated specific lipid domains that colocalized with inner leaflet small GTPase H-Ras, but not K-Ras. The use of nakanori as a lipid-domain-specific probe revealed altered distribution and dynamics of SM/Chol on the cell surface of Niemann-Pick type C fibroblasts, possibly explaining some of the disease phenotype. In addition, that nakanori treatment of epithelial cells after influenza virus infection potently inhibited virus release demonstrates the therapeutic value of targeting specific lipid domains for anti-viral treatment.-Makino, A., Abe, M., Ishitsuka, R., Murate, M., Kishimoto, T., Sakai, S., Hullin-Matsuda, F., Shimada, Y., Inaba, T., Miyatake, H., Tanaka, H., Kurahashi, A., Pack, C.-G., Kasai, R. S., Kubo, S., Schieber, N. L., Dohmae, N., Tochio, N., Hagiwara, K., Sasaki, Y., Aida, Y., Fujimori, F., Kigawa, T., Nishibori, K., Parton, R. G., Kusumi, A., Sako, Y., Anderluh, G., Yamashita, M., Kobayashi, T., Greimel, P., Kobayashi, T. A novel sphingomyelin/cholesterol domain-specific probe reveals the dynamics of the membrane domains during virus release and in Niemann-Pick type C.


Asunto(s)
Colesterol/metabolismo , Proteínas Fúngicas/farmacología , Grifola/química , Microdominios de Membrana/efectos de los fármacos , Enfermedad de Niemann-Pick Tipo C/metabolismo , Esfingomielinas/metabolismo , Sitios de Unión , Células Cultivadas , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Células HeLa , Humanos , Microdominios de Membrana/metabolismo , Microdominios de Membrana/virología , Unión Proteica , Liberación del Virus
16.
BMC Neurol ; 18(1): 62, 2018 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-29734949

RESUMEN

BACKGROUND: Some metabolic disorders, including abnormal calcium metabolism, can develop and worsen parkinsonism. However, whether hyperparathyroidism can cause parkinsonism remains controversial. CASE PRESENTATION: An 83-year-old woman with a history of right thalamic hemorrhage and drug-induced parkinsonism, was admitted due to worsening of parkinsonian symptoms including mask-like face, bradykinesia, freezing of gait, and rigidity. She had been diagnosed with autoimmune hepatitis and was being treated with prednisolone. Examinations revealed hypercalcemia (14.3 mg/dL) with an increased level of intact parathyroid hormone (iPTH) (361 pg/mL). Her symptoms were resistant to some additional anti-parkinsonian drugs; however, cinacalcet hydrochloride, a calcimimetic for the treatment of secondary hyperparathyroidism, normalized levels of serum calcium and iPTH, and remarkably improved her symptoms. CONCLUSIONS: In the present case, we speculate that hypercalcemia probably due to secondary hyperparathyroidism that had developed during steroid therapy deteriorated the parkinsonism.


Asunto(s)
Calcimiméticos/uso terapéutico , Cinacalcet/uso terapéutico , Hiperparatiroidismo Secundario/complicaciones , Hiperparatiroidismo Secundario/tratamiento farmacológico , Trastornos Parkinsonianos/complicaciones , Anciano de 80 o más Años , Femenino , Humanos , Hipercalcemia/tratamiento farmacológico , Hipercalcemia/etiología , Persona de Mediana Edad
17.
Biochim Biophys Acta ; 1851(12): 1554-65, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26398595

RESUMEN

Sphingomyelin (SM) is synthesized by SM synthase (SMS) from ceramide (Cer). SM regulates signaling pathways and maintains organ structure. SM comprises a sphingoid base and differing lengths of acyl-chains, but the importance of its various forms and regulatory synthases is not known. It has been reported that Cer synthase (CerS) has restricted substrate specificity, whereas SMS has no specificity for different lengths of acyl-chains. We hypothesized that the distribution of each SM molecular species was regulated by expression of the CerS family. Thus, we compared the distribution of SM species and CerS mRNA expression using molecular imaging. Spatial distribution of each SM molecular species was investigated using ultra-high-resolution imaging mass spectrometry (IMS). IMS revealed that distribution of SM molecular species varied according to the lengths of acyl-chains found in each brain section. Furthermore, a combination study using in situ hybridization and IMS revealed the spatial expression of CerS1 to be associated with the localization of SM (d18:1/18:0) in cell body-rich gray matter, and CerS2 to be associated with SM (d18:1/24:1) in myelin-rich white matter. Our study is the first comparison of spatial distribution between SM molecular species and CerS isoforms, and revealed their distinct association in the brain. These observations were demonstrated by suppression of CerS2 using siRNA in HepG2 cells; that is, siRNA for CerS2 specifically decreased C22 very long-chain fatty acid (VLCFA)- and C24 VLCFA-containing SMs. Thus, histological analyses of SM species by IMS could be a useful approach to consider their molecular function and regulative mechanism.


Asunto(s)
Encéfalo/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Esfingomielinas/biosíntesis , Esfingosina N-Aciltransferasa/metabolismo , Animales , Química Encefálica/fisiología , Células Hep G2 , Humanos , Masculino , Ratones
18.
BMC Neurol ; 16: 121, 2016 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-27474010

RESUMEN

BACKGROUND: Volume isotropic turbo spin-echo acquisition (VISTA) is a new method similar to the 3D black-blood imaging method that enables visualization of a intramural hematoma. T1-VISTA has recently been applied in the diagnosis of intracranial arterial dissection. However, the identification of an intramural hematoma in posterior inferior cerebellar dissection (PICA-D) by T1-VISTA has only rarely been reported. CASE PRESENTATION: We herein report two patients who suffered from PICA-D complicated with ischemic stroke. Initial magnetic resonance arteriography was not informative, however, T1-VISTA depicted high-intensity signal areas suggesting an intramural hematoma of PICA-D in both cases. The high-intensity signal areas gradually reduced and finally disappeared at 4 months and 5 months after the onset, respectively. CONCLUSION: Our cases demonstrate that T1-VISTA was able to assist in the diagnosis and follow-up of PICA-D.


Asunto(s)
Disección Aórtica/diagnóstico por imagen , Imagenología Tridimensional/métodos , Aneurisma Intracraneal/diagnóstico por imagen , Neuroimagen/métodos , Accidente Cerebrovascular/etiología , Disección Aórtica/complicaciones , Arterias Cerebrales/patología , Femenino , Estudios de Seguimiento , Humanos , Aneurisma Intracraneal/complicaciones , Persona de Mediana Edad , Accidente Cerebrovascular/patología
19.
J Lipid Res ; 56(12): 2399-407, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26420879

RESUMEN

Glycosphingolipids (GSLs) are lipid molecules linked to carbohydrate units that form the plasma membrane lipid raft, which is clustered with sphingolipids, sterols, and specific proteins, and thereby contributes to membrane physical properties and specific recognition sites for various biological events. These bioactive GSL molecules consequently affect the pathophysiology and pathogenesis of various diseases. Thus, altered expression of GSLs in various diseases may be of importance for disease-related biomarker discovery. However, analysis of GSLs in blood is particularly challenging because GSLs are present at extremely low concentrations in serum/plasma. In this study, we established absolute GSL-glycan analysis of human serum based on endoglycoceramidase digestion and glycoblotting purification. We established two sample preparation protocols, one with and the other without GSL extraction using chloroform/methanol. Similar amounts of GSL-glycans were recovered with the two protocols. Both protocols permitted absolute quantitation of GSL-glycans using as little as 20 µl of serum. Using 10 healthy human serum samples, up to 42 signals corresponding to GSL-glycan compositions could be quantitatively detected, and the total serum GSL-glycan concentration was calculated to be 12.1-21.4 µM. We further applied this method to TLC-prefractionated serum samples. These findings will assist the discovery of disease-related biomarkers by serum GSL-glycomics.


Asunto(s)
Glicósido Hidrolasas/metabolismo , Glicoesfingolípidos/sangre , Cromatografía en Capa Delgada , Glicoesfingolípidos/metabolismo , Humanos , Polisacáridos/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
20.
J Biol Chem ; 289(35): 24488-98, 2014 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-25037226

RESUMEN

Elevated levels of amyloid-ß peptide (Aß) in the human brain are linked to the pathogenesis of Alzheimer disease. Recent in vitro studies have demonstrated that extracellular Aß can bind to exosomes, which are cell-secreted nanovesicles with lipid membranes that are known to transport their cargos intercellularly. Such findings suggest that the exosomes are involved in Aß metabolism in brain. Here, we found that neuroblastoma-derived exosomes exogenously injected into mouse brains trapped Aß and with the associated Aß were internalized into brain-resident phagocyte microglia. Accordingly, continuous intracerebral administration of the exosomes into amyloid-ß precursor protein transgenic mice resulted in marked reductions in Aß levels, amyloid depositions, and Aß-mediated synaptotoxicity in the hippocampus. In addition, we determined that glycosphingolipids (GSLs), a group of membrane glycolipids, are highly abundant in the exosomes, and the enriched glycans of the GSLs are essential for Aß binding and assembly on the exosomes both in vitro and in vivo. Our data demonstrate that intracerebrally administered exosomes can act as potent scavengers for Aß by carrying it on the exosome surface GSLs and suggest a role of exosomes in Aß clearance in the central nervous system. Improving Aß clearance by exosome administration would provide a novel therapeutic intervention for Alzheimer disease.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Exosomas/metabolismo , Glicoesfingolípidos/metabolismo , Animales , Línea Celular Tumoral , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA