Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
J Basic Microbiol ; 64(6): e2400091, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38651780

RESUMEN

Brevibacillus thermoruber strain Nabari cells grow as widely spreading dendritic colonies on reasoner's 2A-agar (1.5%) plates at around 55°C but as small motile colonies at 37°C. Motile colonies can be divided into colonies that move in straight or curved lines over long distances (wandering colonies), and colonies that rotate at a fixed location (rotating colonies). The addition of surfactant to the agar medium greatly increased the frequency of wandering colonies and facilitated the study of such colonies. The morphology of the wandering colonies varied: circular at the tip and pointed at the back, lemon-shaped with pointed ends, crescent-shaped, bullet-shaped, fish-like, and so on. A single colony may split into multiple colonies as it moves, or multiple colonies may merge into a single colony. The most surprising aspect of the movement of wandering colonies was that when a moving colony collides with another colony, it sometimes does not make a U-turn, but instead retreats straight back, as if bouncing back. The migration mechanisms of wandering colonies are discussed based on optical microscopic observations of swimming patterns of single cells in water and scanning electron microscopy of the arrangement of bacterial cells in wandering colonies.


Asunto(s)
Agar , Brevibacillus , Medios de Cultivo , Brevibacillus/crecimiento & desarrollo , Brevibacillus/fisiología , Brevibacillus/metabolismo , Medios de Cultivo/química , Temperatura , Microscopía Electrónica de Rastreo , Movimiento , Tensoactivos
2.
J Basic Microbiol ; 62(12): 1475-1486, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36190013

RESUMEN

Brevibacillus thermoruber strain Nabari was isolated from compost and identified based on 16 S rRNA gene sequencing and DNA-DNA hybridization using B. thermoruber DSM 7064 T as the standard, despite some differences in their physiological and structural characteristics. When B. thermoruber Nabari was cultivated on various solid media containing 1.5% agar at 60°C, it rapidly propagated over the entire plate. In particular, on R2A-agar medium, it formed fine dendritic colonies. Macroscopic and microscopic observations of peripheral regions of the colonies indicated that the dendritic patterns were formed by bacterial swarming of some of the cells; large flows of bacterial cell populations were observed in the peripheral regions of the dendritic colonies. The cells were highly flagellated, but no extreme elongation of cells was observed. When B. thermoruber Nabari cells were cultivated at 37°C on R2A-agar plates, most colonies were nonmotile, but some colonies were motile. For example, a wandering colony moved on the plate and split into two, and then they collided to become one again. Additionally, a simple incubation system was devised to record the movement of colonies at high temperatures in this study while protecting the cameras from thermal damage.


Asunto(s)
Brevibacillus , Agar , Brevibacillus/genética , Medios de Cultivo , ADN
3.
Appl Microbiol Biotechnol ; 104(17): 7533-7550, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32651597

RESUMEN

Lytic polysaccharide monooxygenases (LPMOs) play an important role in the degradation of complex polysaccharides in lignocellulosic biomass. In the present study, we characterized a modular LPMO (PcAA10A), consisting of a family 10 auxiliary activity of LPMO (AA10) catalytic domain, and non-catalytic domains including a family 5 carbohydrate-binding module, two fibronectin type-3 domains, and a family 3 carbohydrate-binding module from Paenibacillus curdlanolyticus B-6, which was expressed in a recombinant Escherichia coli. Comparison of activities between full-length PcAA10A and the catalytic domain polypeptide (PcAA10A_CD) indicates that the non-catalytic domains are important for the deconstruction of crystalline cellulose and complex polysaccharides contained in untreated lignocellulosic biomass. Interestingly, PcAA10A_CD acted not only on cellulose and chitin, but also on xylan, mannan, and xylan and cellulose contained in lignocellulosic biomass, which has not been reported for the AA10 family. Mutation of the key residues, Trp51 located at subsite - 2 and Phe171 located at subsite +2, in the substrate-binding site of PcAA10A_CD revealed that these residues are substantially involved in broad substrate specificity toward cellulose, xylan, and mannan, albeit with a low effect toward chitin. Furthermore, PcAA10A had a boosting effect on untreated corn hull degradation by P. curdlanolyticus B-6 endo-xylanase Xyn10D and Clostridium thermocellum endo-glucanase Cel9A. These results suggest that PcAA10A is a unique LPMO capable of cleaving and enhancing lignocellulosic biomass degradation, making it a good candidate for biotechnological applications. KEY POINTS: • PcAA10A is a novel modular LPMO family 10 from Paenibacillus curdlanolyticus. • PcAA10A showed broad substrate specificity on ß-1,4 glycosidic linkage substrates. • Non-catalytic domains are important for degrading complex polysaccharides. • PcAA10A is a unique LPMO capable of enhancing lignocellulosic biomass degradation.


Asunto(s)
Paenibacillus , Quitina , Oxigenasas de Función Mixta/metabolismo , Paenibacillus/genética , Paenibacillus/metabolismo , Polisacáridos , Especificidad por Sustrato
4.
J Basic Microbiol ; 58(5): 448-458, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29388680

RESUMEN

Although Ruminiclostridium josui (formerly Clostridium josui), a strictly anaerobic mesophilic cellulolytic bacterium, is a promising candidate for biomass utilization via consolidated bioprocessing, its host-vector system has not yet been established. The existence of a restriction and modification system is a significant barrier to the transformation of R. josui. Here, we partially purified restriction endonuclease RjoI from R. josui cell extract using column chromatography. Further characterization showed that RjoI is an isoschizomer of DpnI, recognizing the sequence 5'-Gmet ATC-3', where the A nucleotide is Dam-methylated. RjoI cleaved the recognition sequence between the A and T nucleotides, producing blunt ends. We then successfully introduced plasmids prepared from Escherichia coli C2925 (dam- /dcm- ) into R. josui by electroporation. The highest transformation efficiency of 6.6 × 103 transformants/µg of DNA was obtained using a square-wave pulse (750 V, 1 ms). When the R. josui cel48A gene, devoid of the dockerin-encoding region, cloned into newly developed plasmid pKKM801 was introduced into R. josui, a truncated form of RjCel48A, RjCel48AΔdoc, was detected in the culture supernatant but not in the intracellular fraction. This is the first report on the establishment of fundamental technology for molecular breeding of R. josui.


Asunto(s)
Clostridiales/enzimología , Clostridiales/genética , Enzimas de Restricción del ADN/genética , Barajamiento de ADN/métodos , Genes Bacterianos/genética , Proteínas Bacterianas/genética , Secuencia de Bases , Celulasa , Clonación Molecular , Enzimas de Restricción del ADN/aislamiento & purificación , Enzimas de Restricción del ADN/metabolismo , Electroporación , Escherichia coli/genética , Plásmidos/genética , Proteínas Recombinantes/genética , Transformación Genética
5.
Appl Environ Microbiol ; 83(22)2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-28864653

RESUMEN

Complete utilization of carbohydrate fractions is one of the prerequisites for obtaining economically favorable lignocellulosic biomass conversion. This study shows that xylan in untreated rice straw was saccharified to xylose in one step without chemical pretreatment, yielding 58.2% of the theoretically maximum value by Paenibacillus curdlanolyticus B-6 PcAxy43A, a weak lignin-binding trifunctional xylanolytic enzyme, endoxylanase/ß-xylosidase/arabinoxylan arabinofuranohydrolase. Moreover, xylose yield from untreated rice straw was enhanced to 78.9% by adding endoxylanases PcXyn10C and PcXyn11A from the same bacterium, resulting in improvement of cellulose accessibility to cellulolytic enzyme. After autoclaving the xylanolytic enzyme-treated rice straw, it was subjected to subsequent saccharification by a combination of the Clostridium thermocellum endoglucanase CtCel9R and Thermoanaerobacter brockii ß-glucosidase TbCglT, yielding 88.5% of the maximum glucose yield, which was higher than the glucose yield obtained from ammonia-treated rice straw saccharification (59.6%). Moreover, this work presents a new environment-friendly xylanolytic enzyme pretreatment for beneficial hydrolysis of xylan in various agricultural residues, such as rice straw and corn hull. It not only could improve cellulose saccharification but also produced xylose, leading to an improvement of the overall fermentable sugar yields without chemical pretreatment.IMPORTANCE Ongoing research is focused on improving "green" pretreatment technologies in order to reduce energy demands and environmental impact and to develop an economically feasible biorefinery. The present study showed that PcAxy43A, a weak lignin-binding trifunctional xylanolytic enzyme, endoxylanase/ß-xylosidase/arabinoxylan arabinofuranohydrolase from P. curdlanolyticus B-6, was capable of conversion of xylan in lignocellulosic biomass such as untreated rice straw to xylose in one step without chemical pretreatment. It demonstrates efficient synergism with endoxylanases PcXyn10C and PcXyn11A to depolymerize xylan in untreated rice straw and enhanced the xylose production and improved cellulose hydrolysis. Therefore, it can be considered an enzymatic pretreatment. Furthermore, the studies here show that glucose yield released from steam- and xylanolytic enzyme-treated rice straw by the combination of CtCel9R and TbCglT was higher than the glucose yield obtained from ammonia-treated rice straw saccharification. This work presents a novel environment-friendly xylanolytic enzyme pretreatment not only as a green pretreatment but also as an economically feasible biorefinery method.


Asunto(s)
Proteínas Bacterianas/química , Celulasa/química , Celulosa/química , Endo-1,4-beta Xilanasas/química , Lignina/química , Oryza/química , Xilanos/química , Xilosidasas/química , Biocatálisis , Clostridium thermocellum/enzimología , Glucosa/química , Hidrólisis , Paenibacillus/enzimología , Tallos de la Planta/química , Thermoanaerobacter/enzimología
6.
Appl Microbiol Biotechnol ; 101(3): 1175-1188, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27743043

RESUMEN

We recently discovered a novel glycoside hydrolase family 6 (GH6) cellobiohydrolase from Paenibacillus curdlanolyticus B-6 (PcCel6A), which is rarely found in bacteria. This enzyme is a true exo-type cellobiohydrolase which exhibits high substrate specificity on amorphous cellulose and low substrate specificity on crystalline cellulose, while this showed no activity on substitution substrates, carboxymethyl cellulose and xylan, distinct from all other known GH6 cellobiohydrolases. Product profiles, HPLC analysis of the hydrolysis products and a schematic drawing of the substrate-binding subsites catalysing cellooligosaccharides can explain the new mode of action of this enzyme which prefers to hydrolyse cellopentaose. PcCel6A was not inhibited by glucose or cellobiose at concentrations up to 300 and 100 mM, respectively. A good synergistic effect for glucose production was found when PcCel6A acted together with processive endoglucanase Cel9R from Clostridium thermocellum and ß-glucosidase CglT from Thermoanaerobacter brockii. These properties of PcCel6A make it a suitable candidate for industrial application in the cellulose degradation process.


Asunto(s)
Celulosa 1,4-beta-Celobiosidasa/aislamiento & purificación , Celulosa 1,4-beta-Celobiosidasa/metabolismo , Celulosa/metabolismo , Paenibacillus/enzimología , Proteínas Bacterianas/metabolismo , Carboximetilcelulosa de Sodio , Celobiosa/metabolismo , Cromatografía Líquida de Alta Presión , Clonación Molecular , Glucosa/metabolismo , Hidrólisis , Cinética , Paenibacillus/genética , Paenibacillus/metabolismo , Alineación de Secuencia , Especificidad por Sustrato , Xilanos/metabolismo
7.
J Basic Microbiol ; 57(2): 121-131, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27862076

RESUMEN

The newly isolated Paenibacillus sp. M33 from freshwater swamp forest soil in Thailand demonstrated its potential as a cellulose degrader. One of its endoglucanase genes from Paenibacillus sp., celP, was cloned to study the molecular characteristics of its gene product. The celP gene was recognized firstly by degenerate primer designed from Paenibacillus endoglucanase gene, and subsequently identified flanking region by inverse PCR technique. The celP gene consists of an open reading frame of 1707 bp encoding for 569 amino acids including 33-amino acids signal sequence. CelP is a member of glycoside hydrolase family 5 appended with a family 46 carbohydrate-binding module. CelP from recombinant Escherichia coli was purified by affinity chromatography. SDS-PAGE analysis of purified CelP showed a protein band at about 60 kDa. The purified enzyme gave a specific CMCase activity of 0.03 µmol min-1 mg-1 . It had higher activities on lichenan (0.19 µmol min-1 mg-1 ) and barley ß-glucan (0.14 µmol min-1 mg-1 ). Maximum activity on lichenan was obtained at 50 °C, pH 5.0. CelP was stable over a pH range of 3.0-10.0 and retained 80% activity when incubated at 50 °C for 1 h. The properties of its CelP endoglucanase, especially substrate specificity, will make it useful in various biotechnological applications including biomass hydrolysis.


Asunto(s)
Celulasa/aislamiento & purificación , Celulasa/metabolismo , Paenibacillus/enzimología , Secuencia de Aminoácidos , Técnicas de Tipificación Bacteriana , Secuencia de Bases , Celulasa/química , Celulasa/genética , Cromatografía de Afinidad , Clonación Molecular , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Electroforesis en Gel de Poliacrilamida , Microbiología Ambiental , Estabilidad de Enzimas , Expresión Génica , Glucanos/metabolismo , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Peso Molecular , Sistemas de Lectura Abierta , Paenibacillus/clasificación , Paenibacillus/aislamiento & purificación , Filogenia , Señales de Clasificación de Proteína , ARN Ribosómico 16S/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Análisis de Secuencia de ADN , Especificidad por Sustrato , Temperatura , Tailandia , beta-Glucanos/metabolismo
8.
J Biol Chem ; 290(17): 10572-86, 2015 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-25713075

RESUMEN

Structural carbohydrates comprise an extraordinary source of energy that remains poorly utilized by the biofuel sector as enzymes have restricted access to their substrates within the intricacy of plant cell walls. Carbohydrate active enzymes (CAZYmes) that target recalcitrant polysaccharides are modular enzymes containing noncatalytic carbohydrate-binding modules (CBMs) that direct enzymes to their cognate substrate, thus potentiating catalysis. In general, CBMs are functionally and structurally autonomous from their associated catalytic domains from which they are separated through flexible linker sequences. Here, we show that a C-terminal CBM46 derived from BhCel5B, a Bacillus halodurans endoglucanase, does not interact with ß-glucans independently but, uniquely, acts cooperatively with the catalytic domain of the enzyme in substrate recognition. The structure of BhCBM46 revealed a ß-sandwich fold that abuts onto the region of the substrate binding cleft upstream of the active site. BhCBM46 as a discrete entity is unable to bind to ß-glucans. Removal of BhCBM46 from BhCel5B, however, abrogates binding to ß-1,3-1,4-glucans while substantially decreasing the affinity for decorated ß-1,4-glucan homopolymers such as xyloglucan. The CBM46 was shown to contribute to xyloglucan hydrolysis only in the context of intact plant cell walls, but it potentiates enzymatic activity against purified ß-1,3-1,4-glucans in solution or within the cell wall. This report reveals the mechanism by which a CBM can promote enzyme activity through direct interaction with the substrate or by targeting regions of the plant cell wall where the target glucan is abundant.


Asunto(s)
Bacillus/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Celulasa/química , Celulasa/metabolismo , Secuencia de Aminoácidos , Bacillus/genética , Proteínas Bacterianas/genética , Metabolismo de los Hidratos de Carbono , Dominio Catalítico , Pared Celular/metabolismo , Celulasa/genética , Cristalografía por Rayos X , Genes Bacterianos , Variación Genética , Glucanos/metabolismo , Hidrólisis , Modelos Moleculares , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Termodinámica , Nicotiana/metabolismo , Xilanos/metabolismo , beta-Glucanos/metabolismo
9.
Appl Environ Microbiol ; 82(23): 6942-6951, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27663030

RESUMEN

The axy43A gene encoding the intracellular trifunctional xylanolytic enzyme from Paenibacillus curdlanolyticus B-6 was cloned and expressed in Escherichia coli Recombinant PcAxy43A consisting of a glycoside hydrolase family 43 and a family 6 carbohydrate-binding module exhibited endo-xylanase, ß-xylosidase, and arabinoxylan arabinofuranohydrolase activities. PcAxy43A hydrolyzed xylohexaose and birch wood xylan to release a series of xylooligosaccharides, indicating that PcAxy43A contained endo-xylanase activity. PcAxy43A exhibited ß-xylosidase activity toward a chromogenic substrate, p-nitrophenyl-ß-d-xylopyranoside, and xylobiose, while it preferred to hydrolyze long-chain xylooligosaccharides rather than xylobiose. In addition, surprisingly, PcAxy43A showed arabinoxylan arabinofuranohydrolase activity; that is, it released arabinose from both singly and doubly arabinosylated xylose, α-l-Araf-(1→2)-d-Xylp or α-l-Araf-(1→3)-d-Xylp and α-l-Araf-(1→2)-[α-l-Araf-(1→3)]-ß-d-Xylp Moreover, the combination of PcAxy43A and P. curdlanolyticus B-6 endo-xylanase Xyn10C greatly improved the efficiency of xylose and arabinose production from the highly substituted rye arabinoxylan, suggesting that these two enzymes function synergistically to depolymerize arabinoxylan. Therefore, PcAxy43A has the potential for the saccharification of arabinoxylan into simple sugars for many applications. IMPORTANCE In this study, the glycoside hydrolase 43 (GH43) intracellular multifunctional endo-xylanase, ß-xylosidase, and arabinoxylan arabinofuranohydrolase (AXH) from P. curdlanolyticus B-6 were characterized. Interestingly, PcAxy43A AXH showed a new property that acted on both the C(O)-2 and C(O)-3 positions of xylose residues doubly substituted with arabinosyl, which usually obstruct the action of xylanolytic enzymes. Furthermore, the studies here show interesting properties for the processing of xylans from cereal grains, particularly rye arabinoxylan, and show a novel relationship between PcAxy43A and endo-xylanase Xyn10C from strain B-6, providing novel metabolic potential for processing arabinoxylans into xylose and arabinose.

10.
J Virol ; 86(17): 9538-9, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22879611

RESUMEN

Enterococcus faecalis is an opportunistic pathogen that causes serious infections in humans and animals and is also an important bacterium for dairy and probiotic supplement production. Therefore, bacteriophages infecting E. faecalis may be useful for phage therapy against multidrug-resistant strains or may threaten industrial fermentation. We isolated a virulent Siphoviridae bacteriophage, BC-611, specifically infecting E. faecalis strain NP-10011 but not infecting other E. faecalis strains or other enterococci. Although the genome sequence of BC-611 resembled that of enterococcal bacteriophage SAP6, BC-611 was marked by its narrow host specificity.


Asunto(s)
Bacteriófagos/genética , Enterococcus faecalis/virología , Genoma Viral , Siphoviridae/genética , Bacteriófagos/clasificación , Bacteriófagos/aislamiento & purificación , Bacteriófagos/fisiología , Secuencia de Bases , Datos de Secuencia Molecular , Siphoviridae/clasificación , Siphoviridae/aislamiento & purificación , Siphoviridae/fisiología
11.
Appl Environ Microbiol ; 78(14): 4781-7, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22562994

RESUMEN

In general, cellulases and hemicellulases are modular enzymes in which the catalytic domain is appended to one or more noncatalytic carbohydrate binding modules (CBMs). CBMs, by concentrating the parental enzyme at their target polysaccharide, increase the capacity of the catalytic module to bind the substrate, leading to a potentiation in catalysis. Clostridium thermocellum hypothetical protein Cthe_0821, defined here as C. thermocellum Man5A, is a modular protein comprising an N-terminal signal peptide, a family 5 glycoside hydrolase (GH5) catalytic module, a family 32 CBM (CBM32), and a C-terminal type I dockerin module. Recent proteomic studies revealed that Cthe_0821 is one of the major cellulosomal enzymes when C. thermocellum is cultured on cellulose. Here we show that the GH5 catalytic module of Cthe_0821 displays endomannanase activity. C. thermocellum Man5A hydrolyzes soluble konjac glucomannan, soluble carob galactomannan, and insoluble ivory nut mannan but does not attack the highly galactosylated mannan from guar gum, suggesting that the enzyme prefers unsubstituted ß-1,4-mannoside linkages. The CBM32 of C. thermocellum Man5A displays a preference for the nonreducing ends of mannooligosaccharides, although the protein module exhibits measurable affinity for the termini of ß-1,4-linked glucooligosaccharides such as cellobiose. CBM32 potentiates the activity of C. thermocellum Man5A against insoluble mannans but has no significant effect on the capacity of the enzyme to hydrolyze soluble galactomannans and glucomannans. The product profile of C. thermocellum Man5A is affected by the presence of CBM32.


Asunto(s)
Clostridium thermocellum/enzimología , Mananos/metabolismo , Manosidasas/metabolismo , Secuencia de Aminoácidos , Carbohidratos/química , Clostridium thermocellum/química , Clostridium thermocellum/genética , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Galactanos/metabolismo , Glicósido Hidrolasas/metabolismo , Manosidasas/química , Manosidasas/genética , Datos de Secuencia Molecular , Gomas de Plantas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
12.
Appl Environ Microbiol ; 77(12): 4260-3, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21498754

RESUMEN

Paenibacillus curdlanolyticus B-6 Xyn10D is a xylanase containing a family 3 carbohydrate-binding module (CBM3). Biochemical analyses using recombinant proteins derived from Xyn10D suggested that the CBM3 polypeptide has an affinity for cellulose and xylan and that CBM3 in Xyn10D is important for hydrolysis of insoluble arabinoxylan and natural biomass.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Paenibacillus/enzimología , Xilosidasas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Celulosa/metabolismo , ADN Bacteriano/química , ADN Bacteriano/genética , Datos de Secuencia Molecular , Paenibacillus/genética , Unión Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ADN , Especificidad por Sustrato , Xilanos/metabolismo , Xilosidasas/genética
13.
Protein Expr Purif ; 70(1): 23-31, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19836451

RESUMEN

Highly specific dockerin-cohesin interaction intrinsically involved in the cellulosome formation in Clostridium josui was applied for the construction of an affinity tag purification system. Amino acid substitutions were introduced into the dockerin domain of C. josui Cel8A at positions 11, 12, 44, and 45 and mutant dockerin domains were examined for their ability as an affinity tag: mutant dockerin-tagged proteins were adsorbed onto a cohesin (Coh2)-coupled Sepharose in the presence of Ca(2+) and desorbed from the protein and Coh2-Sepharose complex by the addition of a chelating agent, EGTA. Single-step purification tests showed that substitution of glycine or serine for isoleucine at position 45 markedly improved the recovery of the recombinant proteins from the proteins and Coh2-Sepharose complex. Surface plasmon resonance analysis of the interaction between the I45G mutant and Coh2 indicated that the mutation decreased binding rate and increased dissociation rate, resulting in decrease in dissociation constant. When model proteins such as JNK3, MAP2K3, IL-8, and pro-IL-18 were expressed as I45G dockerin-tagged proteins in the baculovirus expression system and purified by the single-step purification, purity of all the I45G dockerin-tagged proteins tested was higher than 90%. Furthermore, insertion of a thrombin cleavage site between the dockerin tag and target proteins enabled rapid removal of the tag from the target proteins by thrombin protease. This system, named the Dock tag purification system, can be widely utilized and contributes to various fields in academic and application researches.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Ciclo Celular/química , Cromatografía de Afinidad/métodos , Proteínas Cromosómicas no Histona/química , Clostridium/metabolismo , Proteínas Recombinantes/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Sitios de Unión , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Mutagénesis Sitio-Dirigida , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Cohesinas
14.
Biosci Biotechnol Biochem ; 74(11): 2358-60, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21071839

RESUMEN

The Paenibacillus curdlanolyticus xyn10B gene encoding a family-10 xylanase was cloned and expressed in Escherichia coli, and the recombinant enzyme rXyn10B was characterized. Immunological analysis suggested that Xyn10B is an intracellular enzyme. rXyn10B hydrolyzed birch-wood xylan and xylooligosaccharides to produce mainly xylobiose, suggesting that it is an endoxylanase. Its properties were significantly different from those of some homologous enzymes.


Asunto(s)
Endo-1,4-beta Xilanasas/metabolismo , Paenibacillus/enzimología , Clonación Molecular , Disacáridos , Endo-1,4-beta Xilanasas/aislamiento & purificación , Escherichia coli/genética , Hidrólisis , Xilanos/metabolismo , Xilosidasas/aislamiento & purificación , Xilosidasas/metabolismo
15.
Biosci Biotechnol Biochem ; 74(10): 2077-82, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20944403

RESUMEN

A cellulase gene cluster of Clostridium josui was sequenced, and was found to encode 11 proteins responsible for cellulosome (cellulolytic complex) formation, viz., cipA, cel48A, cel8A, cel9A, cel9B, orfX, cel9C, cel9D, man5A, cel9E, and cel5B, in order from the upstream side. All the predicted enzymes had a dockerin module, suggesting that these proteins are members of the C. josui cellulosome. Among these genes, the man5A gene encoding ß-mannanase was expressed in Escherichia coli and the recombinant enzyme (rMan5A) was characterized. rMan5A showed strong activity toward carob galactomannan and low activity toward guar gum, suggesting that it prefers non-galactosylated mannan to galactomannan. This enzyme hydrolyzed ivory nut mannan to produce mainly mannotriose and larger mannooligosaccharides, and was not active toward mannotriose. An antiserum raised against the recombinant enzyme detected Man5A in the culture supernatants of C. josui, which was grown on either ball-milled cellulose or glucose as a carbon source.


Asunto(s)
Proteínas Bacterianas/genética , Celulasa/genética , Clostridium/enzimología , Clostridium/genética , Familia de Multigenes/genética , Proteínas Recombinantes/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Medios de Cultivo Condicionados , Escherichia coli/genética , Immunoblotting , Polisacárido Liasas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Análisis de Secuencia de ADN
16.
Biosci Biotechnol Biochem ; 74(5): 954-60, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20460730

RESUMEN

The xylanase B gene encoding a thermostable family 10 xylanase of Clostridium stercorarium was expressed in plants under the control of a constitutive promoter. Two forms of the xylanase B gene, the xynB gene encoding the full length of the xylanase B gene including the bacterial signal sequence and the xynBM gene without the signal sequence region, were introduced into tobacco BY-2 cells and tobacco plants respectively under the control of the cauliflower mosaic virus 35S promoter. Transgenic BY-2 cells and tobacco plants showed xylanase activity and normal growth. The recombinant enzyme produced in transgenic BY-2 cells harboring the xynB gene was secreted into the culture supernatant, and the recombinant enzyme produced in transgenic BY-2 cells harboring the xynBM gene was localized in the cells. In contrast to tobacco plants, expression of the xynB gene under the control of the rice actin promoter in rice plants was toxic to host cells. However, the recombinant XynBM accumulated in leaf cells, and no phenotypic effect of expression of the xynBM gene was observed. Enzyme activity was maintained in cell-free extracts of transgenic rice leaves at 60 degrees C for 72 h, and the recombinant XynBM degraded hemicellulosic polymers in cell-free extracts of transgenic rice leaves.


Asunto(s)
Clostridium/genética , Endo-1,4-beta Xilanasas/genética , Endo-1,4-beta Xilanasas/metabolismo , Nicotiana/genética , Oryza/genética , Ingeniería de Proteínas/métodos , Temperatura , Línea Celular , Clostridium/enzimología , Endo-1,4-beta Xilanasas/biosíntesis , Endo-1,4-beta Xilanasas/química , Estabilidad de Enzimas , Plantas Modificadas Genéticamente , Polisacáridos/metabolismo
17.
Biochem J ; 424(3): 375-84, 2009 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-19758121

RESUMEN

Cellulosomes, synthesized by anaerobic microorganisms such as Clostridium thermocellum, are remarkably complex nanomachines that efficiently degrade plant cell wall polysaccharides. Cellulosome assembly results from the interaction of type I dockerin domains, present on the catalytic subunits, and the cohesin domains of a large non-catalytic integrating protein that acts as a molecular scaffold. In general, type I dockerins contain two distinct cohesin-binding interfaces that appear to display identical ligand specificities. Inspection of the C. thermocellum genome reveals 72 dockerin-containing proteins. In four of these proteins, Cthe_0258, Cthe_0435, Cthe_0624 and Cthe_0918, there are significant differences in the residues that comprise the two cohesin-binding sites of the type I dockerin domains. In addition, a protein of unknown function (Cthe_0452), containing a C-terminal cohesin highly similar to the equivalent domains present in C. thermocellum-integrating protein (CipA), was also identified. In the present study, the ligand specificities of the newly identified cohesin and dockerin domains are described. The results revealed that Cthe_0452 is located at the C. thermocellum cell surface and thus the protein was renamed as OlpC. The dockerins of Cthe_0258 and Cthe_0435 recognize, preferentially, the OlpC cohesin and thus these enzymes are believed to be predominantly located at the surface of the bacterium. By contrast, the dockerin domains of Cthe_0624 and Cthe_0918 are primarily cellulosomal since they bind preferentially to the cohesins of CipA. OlpC, which is a relatively abundant protein, may also adopt a 'warehouse' function by transiently retaining cellulosomal enzymes at the cell surface before they are assembled on to the multienzyme complex.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Clostridium thermocellum/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Pared Celular/metabolismo , Celulosomas/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , Clostridium thermocellum/genética , Electroforesis en Gel de Poliacrilamida , Cinética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Mutación , Unión Proteica , Homología de Secuencia de Aminoácido , Termodinámica , Cohesinas
18.
Microorganisms ; 8(6)2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32517022

RESUMEN

To better understand the light regulation of ligninolytic systems in Trametes polyzona KU-RNW027, ligninolytic enzymes-encoding genes were identified and analyzed to determine their transcriptional regulatory elements. Elements of light regulation were investigated in submerged culture. Three ligninolytic enzyme-encoding genes, mnp1, mnp2, and lac1, were found. Cloning of the genes encoding MnP1 and MnP2 revealed distinct deduced amino acid sequences with 90% and 86% similarity to MnPs in Lenzites gibbosa, respectively. These were classified as new members of short-type hybrid MnPs in subfamily A.2 class II fungal secretion heme peroxidase. A light responsive element (LRE), composed of a 5'-CCRCCC-3' motif in both mnp promoters, is reported. Light enhanced MnP activity 1.5 times but not laccase activity. The mnp gene expressions under light condition increased 6.5- and 3.8-fold, respectively. Regulation of laccase gene expression by light was inconsistent with the absence of LREs in their promoter. Blue light did not affect gene expressions but impacted their stability. Reductions of MnP and laccase production under blue light were observed. The details of the molecular mechanisms underlying enzyme production in this white-rot fungus provide useful knowledge for wood degradation relative to illumination condition. These novel observations demonstrate the potential of enhancing ligninolytic enzyme production by this fungus for applications with an eco-friendly approach to bioremediation.

19.
Enzyme Microb Technol ; 138: 109546, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32527521

RESUMEN

Ruminiclostridium josui Fae1A is a modular enzyme consisting of an N-terminal signal peptide, family-1 carbohydrate esterase module (CE1), family-6 carbohydrate-binding module (CBM6), and dockerin module in that order. Recombinant CE1 and CBM6 polypeptides were collectively and separately produced as RjFae1A, RjCE1, and RjCBM6. RjFae1A showed higher feruloyl esterase activity than RjCE1 towards insoluble wheat arabinoxylan, but the latter was more active towards small synthetic substrates than the former. This suggests that CBM6 in RjFae1A plays an important role in releasing ferulic acid from the native substrate. RjCBM6 showed a higher affinity for soluble wheat arabinoxylan than for rye arabinoxylan and beechwood xylan in native affinity polyacrylamide gel electrophoresis. Isothermal titration calorimetry analysis demonstrated that RjCBM6 recognized a xylopyranosyl residue at the nonreducing ends of xylooligosaccharides. Moreover, it showed exceptional affinity for 23-α-l-arabinofuranosyl-xylotriose (A2XX) among the tested branched arabinoxylooligosaccharides. Fluorometric titration analysis demonstrated that xylobiose and A2XX competitively bound to RjCBM6, and both bound to the same site in RjCBM6. RjCBM6's preference for the xylopyranosyl residue at the nonreducing end of xylan chains explains why the positive effect of CBM6 on RjFae1A activity was observed only during short incubation but not after extended incubation.


Asunto(s)
Hidrolasas de Éster Carboxílico/química , Hidrolasas de Éster Carboxílico/metabolismo , Ácidos Cumáricos/metabolismo , Triticum/química , Xilanos/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Hidrolasas de Éster Carboxílico/genética , Clostridiales/enzimología , Glucuronatos/química , Glucuronatos/metabolismo , Oligosacáridos/química , Oligosacáridos/metabolismo , Polisacáridos/metabolismo , Unión Proteica , Dominios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Secale/química , Especificidad por Sustrato , Xilosa/metabolismo
20.
Biosci Biotechnol Biochem ; 73(6): 1425-8, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19502754

RESUMEN

The cbnA gene encoding chlorocatechol dioxygenase from the soil bacterium Ralstonia eutropha NH9 under the control of a modified cauliflower mosaic virus 35S promoter was introduced into a hybrid poplar (Populus tremula x P. tremuloides). Integration of the cbnA gene in transgenic poplar was confirmed by PCR and genomic Southern blot analysis. Expression of the cbnA gene was analyzed by Western blot analysis. Transgenic poplar calli efficiently converted 3-chlorocatechol to 2-chloro-cis,cis-muconate.


Asunto(s)
Cupriavidus necator/enzimología , Dioxigenasas/genética , Populus/genética , Southern Blotting , Western Blotting , Cromatografía Liquida , Genes de Plantas , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa , Populus/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA