Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cancer Immunol Immunother ; 73(6): 98, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38619641

RESUMEN

CAR-T-cell therapy has shown promise in treating hematological malignancies but faces challenges in treating solid tumors due to impaired T-cell function in the tumor microenvironment. To provide optimal T-cell activation, we developed a B7 homolog 3 protein (B7H3)-targeting CAR construct consisting of three activation signals: CD3ζ (signal 1), 41BB (signal 2), and the interleukin 7 receptor alpha (IL7Rα) cytoplasmic domain (signal 3). We generated B7H3 CAR-T cells with different lengths of the IL7Rα cytoplasmic domain, including the full length (IL7R-L), intermediate length (IL7R-M), and short length (IL7R-S) domains, and evaluated their functionality in vitro and in vivo. All the B7H3-IL7Rα CAR-T cells exhibited a less differentiated phenotype and effectively eliminated B7H3-positive glioblastoma in vitro. Superiority was found in B7H3 CAR-T cells contained the short length of the IL7Rα cytoplasmic domain. Integration of the IL7R-S cytoplasmic domain maintained pSTAT5 activation and increased T-cell proliferation while reducing activation-induced cell death. Moreover, RNA-sequencing analysis of B7H3-IL7R-S CAR-T cells after coculture with a glioblastoma cell line revealed downregulation of proapoptotic genes and upregulation of genes associated with T-cell proliferation compared with those in 2nd generation B7H3 CAR-T cells. In animal models, compared with conventional CAR-T cells, B7H3-IL7R-S CAR-T cells suppressed tumor growth and prolonged overall survival. Our study demonstrated the therapeutic potential of IL7Rα-incorporating CAR-T cells for glioblastoma treatment, suggesting a promising strategy for augmenting the effectiveness of CAR-T cell therapy.


Asunto(s)
Glioblastoma , Receptores Quiméricos de Antígenos , Animales , Glioblastoma/terapia , Receptores Quiméricos de Antígenos/genética , Receptores de Interleucina-7/genética , Transducción de Señal , Linfocitos T , Microambiente Tumoral , Humanos
2.
Int J Mol Sci ; 25(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38892016

RESUMEN

Transforming growth factor beta (TGF-ß) is ubiquitously found in bone and plays a key role in bone turnover. Mice expressing constitutively active TGF-ß receptor type I (Mx1;TßRICA mice) are osteopenic. Here, we identified the candidate genes involved in bone turnover in Mx1;TßRICA mice using RNA sequencing analysis. A total of 285 genes, including 87 upregulated and 198 downregulated genes, were differentially expressed. According to the KEGG analysis, some genes were involved in osteoclast differentiation (Fcgr4, Lilrb4a), B cell receptor signaling (Cd72, Lilrb4a), and neutrophil extracellular trap formation (Hdac7, Padi4). Lilrb4 is related to osteoclast inhibition protein, whereas Hdac7 is a Runx2 corepressor that regulates osteoblast differentiation. Silencing Lilrb4 increased the number of osteoclasts and osteoclast marker genes. The knocking down of Hdac7 increased alkaline phosphatase activity, mineralization, and osteoblast marker genes. Therefore, our present study may provide an innovative idea for potential therapeutic targets and pathways in TßRI-associated bone loss.


Asunto(s)
Remodelación Ósea , Osteoclastos , Animales , Ratones , Remodelación Ósea/genética , Osteoclastos/metabolismo , Osteoclastos/citología , Osteoblastos/metabolismo , Regulación de la Expresión Génica , Receptor Tipo I de Factor de Crecimiento Transformador beta/genética , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Diferenciación Celular/genética , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Perfilación de la Expresión Génica
3.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38069267

RESUMEN

Chronic inflammation contributes to the development of skeletal disorders in patients with systemic lupus erythematosus (SLE). Activation of the host immune response stimulates osteoclast activity, which in turn leads to bone loss. Regenerating bone in the inflammatory microenvironments of SLE patients with critical bone defects remains a great challenge. In this study, we utilized lipopolysaccharide (LPS) to imitate locally and systemically pathogenic bacterial infection and examined the bone regeneration performance of LPS-associated mandibular and tibial bone regeneration impairment in FcγRIIB-/- mice. Our results indicated that a loss of FcγRIIB alleviates bone regeneration in both mandibles and tibiae. After LPS induction, FcγRIIB-/- mice were susceptible to impaired fracture healing in tibial and mandibular bones. LPS decreased the mineralization to collagen ratio in FcγRIIB-/- mice, indicating a mineralization defect during bone repair. An osteoblast-associated gene (Col1a1) was attenuated in FcγRIIB-deficient mice, whereas Bglap, Hhip, and Creb5 were further downregulated with LPS treatment in FcγRIIB-/- mice compared to FcγRIIB-/- mice. Alpl and Bglap expression was dcreased in osteoblasts derived from bone chips. An osteoclast-associated gene, Tnfsf11/Tnfrsf11 ratio, ewas increased in LPS-induced FcγRIIB-/- mice and in vitro. Furthermore, systemic LPS was relatively potent in stimulating production of pro-inflammatory cytokines including TNF-α, IL-6, and MCP-1 in FcγRIIB-/- mice compared to FcγRIIB-/- mice. The levels of TNF-α, IFN-ß, IL-1α, and IL-17A were increased, whereas IL-10 and IL-23 were decreased in FcγRIIB-/- mice treated locally with LPS. These findings suggest that both local and systemic LPS burden can exacerbate bone regeneration impairment, delay mineralization and skeletal repair, and induce inflammation in SLE patients.


Asunto(s)
Lipopolisacáridos , Lupus Eritematoso Sistémico , Animales , Ratones , Inflamación , Lipopolisacáridos/toxicidad , Osteoclastos , Factor de Necrosis Tumoral alfa
4.
Int J Mol Sci ; 24(13)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37445982

RESUMEN

Transforming growth factor beta (TGF-ß) is a key factor mediating the intercellular crosstalk between the hematopoietic stem cells and their microenvironment. Here, we investigated the skeletal phenotype of transgenic mice expressing constitutively active TGF-ß receptor type I under the control of Mx1-Cre (Mx1;TßRICA mice). µCT analysis showed decreased cortical thickness, and cancellous bone volume in both femurs and mandibles. Histomorphometric analysis confirmed a decrease in cancellous bone volume due to increased osteoclast number and decreased osteoblast number. Primary osteoblasts showed decreased ALP and mineralization. Constitutive TßRI activation increased osteoclast differentiation. qPCR analysis showed that Tnfsf11/Tnfrsf11b ratio, Ctsk, Sufu, and Csf1 were increased whereas Runx2, Ptch1, and Ptch2 were decreased in Mx1;TßRICA femurs. Interestingly, Gli1, Wnt3a, Sp7, Alpl, Ptch1, Ptch2, and Shh mRNA expression were reduced whereas Tnfsf11/Tnfrsf11b ratio was increased in Mx1;TßRICA mandibles. Similarly, osteoclast-related genes were increased in Mx1;TßRICA osteoclasts whereas osteoblast-related genes were reduced in Mx1;TßRICA osteoblasts. Western blot analysis indicated that SMAD2 and SMAD3 phosphorylation was increased in Mx1;TßRICA osteoblasts, and SMAD3 phosphorylation was increased in Mx1;TßRICA osteoclasts. CTSK was increased while RUNX2 and PTCH1 was decreased in Mx1;TßRICA mice. Microindentation analysis indicated decreased hardness in Mx1;TßRICA mice. Our study indicated that Mx1;TßRICA mice were osteopenic by increasing osteoclast number and decreasing osteoblast number, possibly by suppressing Hedgehog signaling pathways.


Asunto(s)
Enfermedades Óseas Metabólicas , Subunidad alfa 1 del Factor de Unión al Sitio Principal , Ratones , Animales , Ratones Transgénicos , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Diferenciación Celular , Proteínas Hedgehog/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Enfermedades Óseas Metabólicas/metabolismo
5.
Pharmacol Res ; 150: 104517, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31693936

RESUMEN

Fifty percent of advanced stage ER-positive breast cancer patients develop endocrine resistance. Aberrant activation of Wnt/ß-catenin is associated with stem-like phenotypes and epithelial-mesenchymal transition (EMT) process which confers resistance to endocrine therapy. Cancer stem-like cells (CSLCs) can be a vital source of proangiogenic factors including fibroblast growth factor 2 (FGF2) which drives angiogenesis and leads to tumor growth and metastasis. Therefore, targeting Wnt and FGF2 may provide effective treatment for endocrine resistant breast cancer. Our previous in vitro study reported that plumbagin (PLB) was a potent anticancer agent and was able to inhibit EMT in endocrine-resistant cells. This study aimed to further investigate the inhibitory effects of PLB on cancer stem-like phenotypes, tumorigenicity and angiogenesis. The results demonstrated Wnt/ß-catenin signaling was activated and was able to form mammospheres with increased cancer stem cell markers (ALDH1, NANOG, and OCT4) in endocrine-resistant cells. PLB significantly inhibited colony-forming, mammosphere formation and decreased cancer stem cell markers. The inhibitory effects of PLB on cell proliferation and invasion were mediated by Wnt signaling pathway. PLB also significantly reduced Wnt responsive genes and ß-catenin. Moreover, PLB treatment at doses of 2 and 4 mg/kg/day inhibited tumor growth, angiogenesis and metastasis without any adverse effects on body weight and blood coagulation in orthotopic xenograft nude mice. In conclusion, PLB exerted anti-cancer activity and eliminated stem-like properties by attenuating Wnt/ß-catenin signaling and FGF2 expression. These findings suggest that PLB could be a promising agent to treat endocrine resistant breast cancer.


Asunto(s)
Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Naftoquinonas/farmacología , Naftoquinonas/uso terapéutico , Neovascularización Patológica/tratamiento farmacológico , Animales , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Neoplasias Mamarias Experimentales/patología , Ratones Endogámicos BALB C , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/fisiología , Neovascularización Patológica/patología
6.
Clin Exp Pharmacol Physiol ; 44(10): 1042-1052, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28656701

RESUMEN

Salinomycin is a monocarboxylic polyether ionophore isolated from Streptomyces albus. It has been widely used as an antibiotic in veterinary medicine in poultry. A recent study demonstrated that salinomycin selectively inhibits human breast cancer stem cells; one possible mechanism of tamoxifen resistance. Our results show that salinomycin is effective in inhibiting MCF-7/LCC2 and MCF-7/LCC9 cell lines which are well-established endocrine resistant cells and has a synergistic effect in combination with tamoxifen using MTT proliferation assay. The inhibitory effect of salinomycin on the reduction of critical ER co-activator; amplified breast 1 (AIB1) mRNA and protein expression is overcoming tamoxifen resistance. Moreover, salinomycin significantly inhibits cell invasion in Matrigel invasion assay. The effect was mediated at least in part by the decrease of matrix metalopeptidase 9 (MMP-9) which is one critical enzyme facilitated in the cell invasion process. In conclusion, salinomycin should be developed as a novel agent used alone or in combination for endocrine-resistant breast cancer.


Asunto(s)
Neoplasias de la Mama/patología , Resistencia a Antineoplásicos/efectos de los fármacos , Coactivador 3 de Receptor Nuclear/metabolismo , Piranos/farmacología , Tamoxifeno/farmacología , Apoptosis/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Sinergismo Farmacológico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Células MCF-7 , Metaloproteinasa 9 de la Matriz/genética , Invasividad Neoplásica , Coactivador 3 de Receptor Nuclear/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
7.
Phytother Res ; 30(12): 1968-1977, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27530731

RESUMEN

Tamoxifen is widely used as the first line drug for estrogen receptor-positive subtype which is expressed in 70% of overall breast cancer patients. However, approximately 50% of these patients develop acquired resistance after 5 years of treatment, which is characterized by tumor recurrence and metastasis. The epithelial mesenchymal transition (EMT) is an important process in breast cancer invasion. Fundamentally, targeting the EMT represents a crucial therapeutic strategy for preventing or treating breast cancer metastasis. Plumbagin (PLB) is a natural naphthoquinone with significant anticancer effects against several types of tumor cells including breast cancer. In this study, we investigated the effect of PLB on human endocrine-resistant breast cancer cell growth, invasion and the possible mechanisms underlying such actions. PLB exhibited potent cytotoxic activity at a micromolar concentration against endocrine-resistant breast cancer cells. Interestingly, a fixed low concentration of PLB and tamoxifen combination resulted in an increase in growth inhibition in endocrine-resistant cells. In addition, PLB also significantly suppressed mesenchymal biomarker expressions that govern the EMT process, resulting in attenuated metastatic capabilities. In conclusion, PLB should be developed as a pharmacological agent for the use as a single treatment or in combination for endocrine-resistant breast cancer. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Anticoagulantes/química , Neoplasias de la Mama/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Naftoquinonas/química , Tamoxifeno/farmacología , Anticoagulantes/farmacología , Línea Celular Tumoral , Femenino , Humanos , Naftoquinonas/farmacología
8.
Biomed Pharmacother ; 171: 116142, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38198953

RESUMEN

HER-2 overexpression is a major mechanism involved in endocrine-resistant breast cancer, which has very limited treatment options. Zoledronic acid (ZA) is a drug in the bisphosphonate group used to treat osteoporosis. ZA was reported to exhibit activity in various cancers, with higher efficacy associated with estrogen-deprivation states. ZA inhibits cell proliferation in lung cancer through the epidermal growth factor receptor signaling pathway. Because endocrine-resistant breast cancer cells overexpress HER-2 and grow independently without estrogen, ZA may exert anticancer effects in these cell types. The inhibitory effects and mechanisms of ZA in endocrine-resistant cells through HER-2 signaling were investigated. The efficacy of ZA was higher in the endocrine-resistant breast cancer cells when compared with the wild-type cells. ZA also exhibited a synergistic effect with fulvestrant and may circumvent fulvestrant resistance. ZA decreased phosphorylated ERK (pERK) levels in resistant cell lines and attenuated HER-2 signaling in tamoxifen- and fulvestrant-resistant cells. ZA significantly decreased HER-2 levels and its downstream signaling molecules, including pAKT and pNF-κB in fulvestrant-resistant breast cancer cells. This inhibitory effect may explain the lower IC50 values of ZA in fulvestrant-resistant cells compared with tamoxifen-resistant cells. Moreover, ZA inhibited the migration and invasion in the resistant cell lines, suggesting an ability to inhibit tumor metastasis. The results indicate that ZA has potential for repurposing as an adjuvant treatment for patients with endocrine-resistant breast cancer.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Ácido Zoledrónico , Femenino , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular , Resistencia a Antineoplásicos , Estrógenos/farmacología , Fulvestrant/farmacología , Fulvestrant/uso terapéutico , Transducción de Señal , Tamoxifeno/farmacología , Ácido Zoledrónico/farmacología , Ácido Zoledrónico/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
9.
PLoS One ; 17(5): e0268732, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35622784

RESUMEN

Although patients with either ß-thalassemia or chronic kidney disease (CKD) clinically correlate with severe osteoporosis, the mechanism by which CKD exposed to high phosphate affects bone turnover has not been characterized in ß-thalassemia. We aimed to determine the effects of renal insufficiency on high phosphate intake induced changes in bone metabolism after 5/6th nephrectomy in hemizygous ß-globin knockout (BKO) mice. Male BKO mice manifested severe anemia and osteopenia. Nephrectomy induced renal fibrosis and reduced renal function as assessed by increased serum urea nitrogen levels. Moreover, nephrectomy increased bone turnover leading to bone loss in wild type (WT) but not BKO mice. In nephrectomized BKO, PBS in drinking water induced hyperphosphatemia, and hypercalcemia along with osteopenia in both cancellous and cortical bone. Histomorphometric analysis confirmed reduced cancellous bone volume due to decreased bone formation rate, osteoblast number and osteoclast number. The mRNA levels for Alpl, Sp7, Kl, Tnfsf11, and Tnfsf11/Tnfrsf11b were decreased in nephrectomized BKO mice drinking PBS. Interestingly, Fgf23, a bone-derived hormone produced by osteocytes and osteoblasts in response to hyperphosphatemia, were remarkably increased in nephrectomized BKO mice following PBS intake. Serum FGF23 and erythropoietin levels were markedly elevated in BKO mice. Nephrectomy decreased serum erythropoietin but not FGF23 levels. Hyperphosphatemia in BKO mice increased serum erythropoietin, FGF23, and PTH levels, nominating these factors as candidate mediators of bone loss in thalassemic mice with CKD during phosphate retention.


Asunto(s)
Enfermedades Óseas Metabólicas , Eritropoyetina , Hiperfosfatemia , Insuficiencia Renal Crónica , Talasemia beta , Animales , Enfermedades Óseas Metabólicas/etiología , Factores de Crecimiento de Fibroblastos/metabolismo , Humanos , Masculino , Ratones , Fosfatos
10.
PLoS One ; 16(4): e0250215, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33861790

RESUMEN

Patients with systemic lupus erythematosus are at increased risk for alveolar bone loss due to periodontitis possibly as a result of a pathogenic immune response to oral bacteria and inflammation. The aim of the present study was to investigate whether an anti-TNF-α antagonist could prevent mandibular bone loss in the FcγRIIb-/- mouse model of lupus. Mice lacking FcγRIIb had decreased cancellous and cortical bone volume at 6 months of age. Etanercept increased cancellous but not cortical bone volume in WT and increased both cancellous bone volume and cortical thickness in FcγRIIb-deficient mice. FcγRIIb deficiency decreased mRNA levels for osteoblast marker genes, Osx, Col1a1 and Alp without any change in osteoclast marker genes. Etanercept increased Osx, Alp, and Ocn in both WT and FcγRIIb-/- mice. Osteoclast marker genes including TNF-α, Trap and RANKL/OPG ratio was decreased in WT. Serum markers of proinflammatory cytokines, TNF-α, IFNγ, IL-6, and IL-17A, were increased in FcγRIIb-/- mice and etanercept antagonized these effects in FcγRIIb-/- mice. Etanercept increased serum PTH levels in the FcγRIIb-/- mouse model of lupus. Our results suggest that deletion of FcγRIIb induces osteopenia by increasing the level of proinflammatory cytokines. Etanercept is effective in preventing mandibular bone loss in FcγRIIb-/- mice, suggesting that anti-TNF-α therapy may be able to ameliorate mandibular bone loss in SLE patients with periodontitis.


Asunto(s)
Pérdida de Hueso Alveolar/prevención & control , Etanercept/farmacología , Pérdida de Hueso Alveolar/tratamiento farmacológico , Animales , Enfermedades Óseas Metabólicas/patología , Huesos/patología , Modelos Animales de Enfermedad , Etanercept/metabolismo , Inflamación , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/fisiopatología , Masculino , Mandíbula/metabolismo , Enfermedades Mandibulares/tratamiento farmacológico , Enfermedades Mandibulares/prevención & control , Ratones , Ratones Noqueados , Osteoblastos/patología , Osteoclastos/patología , Periodontitis , Receptores de IgG/genética , Receptores de IgG/metabolismo , Inhibidores del Factor de Necrosis Tumoral/farmacología , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores
11.
Sci Rep ; 11(1): 18726, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34548536

RESUMEN

Patients with systemic lupus erythematosus (SLE) have increased inflammatory cytokines, leading to periodontitis and alveolar bone loss. However, the mechanisms driving this phenomenon are still unknown. Here, we have identified novel therapeutic targets for and mediators of lupus-mediated bone loss using RNA-sequencing (RNA-seq) in a FcγRIIB-/- mouse model of lupus associated osteopenia. A total of 2,710 upregulated and 3,252 downregulated DEGs were identified. The GO and KEGG annotations revealed that osteoclast differentiation, bone mineralization, ossification, and myeloid cell development were downregulated. WikiPathways indicated that Hedgehog, TNFα NF-κB and Notch signaling pathway were also decreased. We identified downregulated targets, Sufu and Serpina12, that have important roles in bone homeostasis. Sufu and Serpina12 were related to Hedgehog signaling proteins, including Gli1, Gli2, Gli3, Ptch1, and Ptch2. Gene knockdown analysis demonstrated that Sufu, and Serpina12 contributed to osteoclastogenesis and osteoblastogenesis, respectively. Osteoclast and osteoblast marker genes were significantly decreased in Sufu-deficient and Serpina12-deficient cells, respectively. Our results suggest that alterations in Hedgehog signaling play an important role in the pathogenesis of osteopenia in FcγRIIB-/- mice. The novel DEGs and pathways identified in this study provide new insight into the underlying mechanisms of mandibular bone loss during lupus development.


Asunto(s)
Mandíbula/patología , Osteoporosis/genética , Receptores de IgG/genética , Animales , Ratones , Ratones Noqueados
12.
Eur J Pharmacol ; 868: 172878, 2020 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-31863768

RESUMEN

The important mechanism of endocrine resistance is the crosstalk between estrogen receptor (ER) and HER2 signaling pathways. Aside from ER downregulation, there was an increase in HER2 expression and increased activation of the downstream AKT/ERK pathways in endocrine-resistant cells (MCF-7/LCC2 and MCF-7/LCC9) which is similar to HER2-overexpressed (SKBR3) cells. However, nuclear receptor coactivator 3 (NCOA3), the important ER-coactivator, that upregulated in endocrine-resistant cells did not express in HER2-overexpressed (SKBR3) cells. NCOA3 was able to activate AKT/ERK signalling pathway. Our previous study reported that plumbagin (PLB), a naphthoquinone compound, had a potent cytotoxic activity against endocrine-resistant cells. This study aimed to further investigate the mechanism of anti-cancer effects of PLB on ER and HER-2 signaling. PLB can inhibit estradiol (E2)-induced cell proliferation in MCF-7 wild-type cells but had no effect in the resistant cells. It also inhibited HER2 expression in both endocrine-resistant and HER-2 overexpressed cells. Therefore, the mechanism of PLB may be regulated through HER-2 signaling. PLB inhibited the phosphorylation of AKT (pAKT) and pERK1/2 and induced apoptosis and reduced the expression of anti-apoptotic genes Bcl-2 and pro-caspase 3 and Cleaved Caspase 3 protein in both endocrine-resistant and HER-2 overexpressed cells. However, the inhibitory effect of PLB was more obvious when pre-treated the cells with AKT inhibitor only in HER-2 overexpressed cells. In addition, the inhibitory effect of PLB on pAKT was attenuated when NCOA3 was downregulated. Our finding suggested that the inhibitory effect of PLB on AKT signaling pathways regulated through NCOA3 in HER2-overexpressed endocrine-resistant cells.


Asunto(s)
Antineoplásicos Hormonales/farmacología , Antineoplásicos Fitogénicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Naftoquinonas/farmacología , Transducción de Señal/efectos de los fármacos , Antineoplásicos Hormonales/uso terapéutico , Antineoplásicos Fitogénicos/uso terapéutico , Neoplasias de la Mama/patología , Resistencia a Antineoplásicos , Femenino , Humanos , Células MCF-7 , Naftoquinonas/uso terapéutico , Coactivador 3 de Receptor Nuclear/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor ErbB-2/metabolismo , Receptores de Estrógenos/metabolismo
13.
Phytomedicine ; 66: 153133, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31790893

RESUMEN

BACKGROUND: PLB is a natural naphthoquinone compound isolated from the roots of Plumbago indica plant. Our previous study reported the inhibitory effect of Plumbagin (PLB) on human endocrine resistant breast cancer cell growth and cell invasion. HYPOTHESIS/PURPOSE: Since PLB is a naphthoquinone compound, it can be reduced by the cytosolic NADPH: quinone oxidoreductase 1 (NQO1) enzyme. NQO1 expression is upregulated in various types of aggressive cancer including breast cancer. This study investigated the impact of NQO1 on anti-cancer effects of PLB in endocrine-resistant breast cancer cells. STUDY DESIGN: This study was an in vitro study using ER-positive cell line (MCF7) and endocrine-resistant cell lines (MCF7/LCC2 and MCF7/LCC9 cells). METHODS: The roles of NQO1 in anti-cancer activity of PLB were investigated by using NQO1 knockdown cells, NQO1 inhibitor and NQO1 overexpressed cells. To study the impact of NQO1 on the effects of PLB on cell viability, apoptosis, invasion and generation of ROS, the following assays were used: MTT assays, annexin V-PE/7-ADD staining flow cytometry, matrigel invasion assays and DCFHDA assays. To study the mechanism of how NQO1 mediated PLB effects in tamoxifen response and apoptosis, we assessed the levels of mRNA expression by using qRT-PCR. RESULTS: 1. In this study, NQO1 was upregulated in endocrine-resistant cells. 2. PLB did not change the expression of NQO1 but it was able to increase NQO1 activity. 3. The inhibitory effects of PLB on cell proliferation, cell invasion and expression of tamoxifen resistant gene were attenuated in NQO1 knockdown cells or in the presence of NQO1 inhibitor. 4. The effects of PLB to induce apoptosis and generate ROS were also decreased when NQO1 activity was inhibited or when the NQO1 expression was reduced. 5. The anti-cancer effects of PLB increased when NQO1 was upregulated. CONCLUSION: The effects of PLB in endocrine-resistant breast cancer cells is dependent on NQO1's activity.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Naftoquinonas/farmacología , Antineoplásicos Fitogénicos/química , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Resistencia a Antineoplásicos , Femenino , Humanos , Células MCF-7 , NAD(P)H Deshidrogenasa (Quinona)/genética , Naftoquinonas/química , Invasividad Neoplásica , Tamoxifeno/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA