Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Photochem Photobiol Sci ; 19(8): 1054-1062, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32609140

RESUMEN

We structurally and spectroscopically investigated a series of praseodymium (Pr) complexes with eight ligands that form helicate molecular structures. The mother ligand skeleton (L) has two bipyridine moieties bridged with ethylenediamine. The bridged skeleton of PrL was changed to diamines 1-methyl-ethylenediamine, trimethylenediamine and 2,2'-dimethyl-trimethylenediamine, and the corresponding ligands were designated as Lme, Lpr and Ldmpr, for each Pr in these complexes upon UV-excitation. The luminescence quantum yields of PrL and PrLpr in the visible and near infrared (NIR) regions indicate that PrL is excited by both the electronic state of the ligand and the ff absorption band, whereas PrLpr is excited through the ligand. The addition of a methyl group to PrL and PrLpr has a different effect on the Pr emission intensity with the intensity of PrLme decreasing more than that of PrL and PrLdmpr and increasing more than that of PrLpr. Thus, the coordination of Pr and the increased rigidity of the ligand upon methylation enhance luminescence. The azomethine moieties on Lme, Lpr and Ldmpr were reduced and formed the corresponding PrLH, PrLmeH, PrLprH and PrLdmprH complexes. The luminescence of the non-methylated series is due to transitions related to the 1D2 level and thus the methylated series luminesces due to high energy levels such as 3PJ arising from the shortened π electronic systems. We also discuss the strong red emission of a series of Eu complexes with eight ligands from the viewpoint of their molecular structures and luminescence efficiencies and evaluate the Judd-Ofelt parameters from the luminescence spectra of Eu complexes.

2.
Inorganica Chim Acta ; 406(100): 279-284, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24068839

RESUMEN

Studies concerning synthesis, structure and luminescence of eight-coordinate Eu, Tb, Sm and Dy complexes of the type [Ln(acac)2(L)]Cl (Hacac = pentanedione-2,4 and L = bis(5-(pyridine-2-yl)-1,2,4-triazol-3-yl)propane) are reported in detail. The obtained complexes were investigated by various means including elemental- and thermogravimetric analysis, IR- and electron transition spectroscopy. The structure of the Tb complex was determined by single-crystal X-ray crystallography: Tb is eight-coordinate, and L acting only as a tetradentate chelate together with two bidentate acac ligands. Photophysical studies of the complexes were carried out. The Tb(III) and Eu(III) complexes show strong emissions both in solid state and solution. The intensity of the luminescence of Dy(III) and Sm(III) are relatively weak. The factors determining the intensity of the photoluminescence are discussed.

3.
Dalton Trans ; 47(21): 7135-7143, 2018 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-29770370

RESUMEN

Five Eu complexes with long alkyl chain groups, abbreviated as EuLCx ("x" indicates the number of methylene groups: x = 8, 12, 14, 18, and 22), were synthesized to evaluate their structural and luminescence properties in chloroform. The mother helicate Eu complex, EuL, which has two bipyridine moieties bridged by an ethylenediamine, has been previously reported. A reduced form in which the azomethine groups of L also coordinated to the Eu ion, EuLH, was newly prepared. EuLH also adopts a helicate molecular structure based on single crystal X-ray structural analysis. The amine hydrogens of the bridging ethylenediamine of LH are active sites for substitution and were exchanged with five different alkyl chains to form EuLCx. Luminescence band positions and shapes of EuLCx in chloroform were completely identical, with a quantum yield of 37.1 ± 1.2 and a lifetime of around 1.25 ms. This indicates that the environments surrounding the Eu ion in the various complexes are all similar. Luminescence quantum yields of TbLH and TbLC18 are also strengthened, 48.7% in acetonitrile and 55% in chloroform, respectively. Potential energy surfaces were also described by using density functional theory, suggesting the possibility of a 1 : 2 complex of Eu and the ligand as a main luminescent species in solutions. This 1 : 2 complexation forms Eu-oxygen coordination using acyl groups. It indicates that the acyl group modification results in a different structure from the mother complexes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA