Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38338946

RESUMEN

Poly(vinyl alcohol) is one of the most attractive polymers with a wide range of uses because of its water solubility, biocompatibility, low toxicity, good mechanical properties, and relatively low cost. This review article focuses on recent advances in poly(vinyl alcohol) electrospinning and summarizes parameters of the process (voltage, distance, flow rate, and collector), solution (molecular weight and concentration), and ambient (humidity and temperature) in order to comprehend the influence on the structural, mechanical, and chemical properties of poly(vinyl alcohol)-based electrospun matrices. The importance of poly(vinyl alcohol) electrospinning in biomedical applications is emphasized by exploring a literature review on biomedical applications including wound dressings, drug delivery, tissue engineering, and biosensors. The study also highlights a new promising area of particles formation through the electrospraying of poly(vinyl alcohol). The limitations and advantages of working with different poly(vinyl alcohol) matrices are reviewed, and some recommendations for the future are made to advance this field of study.


Asunto(s)
Nanofibras , Nanofibras/química , Alcohol Polivinílico/química , Polímeros , Ingeniería de Tejidos , Solubilidad
2.
Environ Chem Lett ; 19(2): 1737-1763, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33424525

RESUMEN

Issues of fossil fuel and plastic pollution are shifting public demand toward biopolymer-based textiles. For instance, silk, which has been traditionally used during at least 5 milleniums in China, is re-emerging in research and industry with the development of high-tech spinning methods. Various arthropods, e.g. insects and arachnids, produce silky proteinic fiber of unique properties such as resistance, elasticity, stickiness and toughness, that show huge potential for biomaterial applications. Compared to synthetic analogs, silk presents advantages of low density, degradability and versatility. Electrospinning allows the creation of nonwoven mats whose pore size and structure show unprecedented characteristics at the nanometric scale, versus classical weaving methods or modern techniques such as melt blowing. Electrospinning has recently allowed to produce silk scaffolds, with applications in regenerative medicine, drug delivery, depollution and filtration. Here we review silk production by the spinning apparatus of the silkworm Bombyx mori and the spiders Aranea diadematus and Nephila Clavipes. We present the biotechnological procedures to get silk proteins, and the preparation of a spinning dope for electrospinning. We discuss silk's mechanical properties in mats obtained from pure polymer dope and multi-composites. This review highlights the similarity between two very different yarn spinning techniques: biological and electrospinning processes.

3.
J Food Sci Technol ; 58(1): 121-128, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33505056

RESUMEN

Fish oil (FO) is a rich source of long-chain omega-3 polyunsaturated fatty acids (ω-3 LCPUFA) which are important for human health. This research investigated the fortification of chicken nuggets with encapsulated FO-Garlic essential oil (GEO) as a possible way for delivery of ω-3 LCPUFA. Five different chicken nugget samples were prepared according to different treatments: Control sample (without fish oil and encapsulated FO-GEO), bulk fish oil samples (0.4% and 0.8%, w/w), and encapsulated FO-GEO samples (4% and 8%, w/w). The quality of the chicken nugget samples were monitored during a 20-day refrigerated storage. Results showed that the addition of encapsulated FO-GEO could significantly delay lipid oxidation and microbiological spoilage of the samples during refrigerated storage. This is reflected by the pH, PV, TBARS and TVBN data (P < 0.05). Samples fortified with encapsulated FO-GEO also showed significantly higher sensory quality and overall acceptability (P < 0.05). The use of 8% encapsulated FO-GEO gave the best antioxidative and antimicrobial properties during storage. However, the best sensory scores were observed in the 4% encapsulated FO-GEO up to 20 days of storage. This study demonstrated that the encapsulated FO-GEO could be used for fortifying and extending shelf-life of food products.

4.
Molecules ; 25(21)2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33121036

RESUMEN

Biobased lignin represents one of the possible materials for next-generation flame retardant additives due to its sustainability, environmental benefits and comparable efficiency to other flame retardant (FR) additives. In this context, this study presents the development of FR polyamide 11 (PA11) multifilament yarns and fabric structures containing different industrial lignins (i.e., lignosulfonate lignin (LL), and Kraft lignin (KL)) and zinc phosphinate (ZnP). The combination of ZnP and lignin (KL or LL) at different weight ratios were used to prepare flame retarded PA11 blends by melt mixing using a twin-screw extruder. These blends were transformed into continuous multifilament yarns by the melt-spinning process even at a high concentration of additives as 20 wt%. The mechanical test results showed that the combination of KL and ZnP achieved higher strength and filaments showed regularity in structure as compared to the LL and ZnP filaments. Thermogravimetric (TG) analysis showed the incorporation of lignin induces the initial decomposition (T5%) at a lower temperature; at the same time, maximum decomposition (Tmax) shifts to a higher temperature region and a higher amount of char residue is reported at the end of the test. Further, the TGA-FTIR study revealed that the ternary blends (i.e., the combination of LL or KL, ZnP, and PA11) released mainly the phosphinate compound, hydrocarbon species, and a small amount of phosphinic acid during the initial decomposition stage (T5%), while hydrocarbons, carbonyls, and phenolic compounds along with CO2 are released during main decomposition stage (Tmax). The analysis of decomposition products suggests the stronger bonds formation in the condensed phase and the obtainment of a stable char layer. Cone calorimetry exploited to study the fire behavior on sheet samples (polymer bulk) showed an improvement in flame retardant properties with increasing lignin content in blends and most enhanced results were found when 10 wt% of LL and ZnP were combined such as a reduction in heat release rate (HRR) up to 64% and total heat release (THR) up to 22%. Besides, tests carried out on knitted fabric structure showed less influence on HRR and THR but the noticeable effect on postponing the time to ignition (TTI) and reduction in the maximum average rate of heat emission (MARHE) value during combustion.


Asunto(s)
Diseño de Fármacos , Retardadores de Llama/análisis , Lignina/química , Nylons/química , Ácidos Fosfínicos/química , Zinc/química , Cinética , Temperatura , Textiles
5.
Int J Mol Sci ; 19(9)2018 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-30149641

RESUMEN

Chitosan (CH)⁻carboxymethyl cellulose sodium salt (NaCMC) microcapsules containing paraffin oil were synthesized by complex formation, and crosslinked with glutaraldehyde (GTA). The electrostatic deposition of NaCMC onto the CH-coated paraffin oil emulsion droplets was demonstrated by zeta potential and optical microscopy. The optimal process conditions were identified in terms of pH of the aqueous solution (5.5) and CH/NaCMC mass ratio (1:1). Encapsulation of paraffin oil and microcapsule morphology were analyzed by ATR-FTIR and SEM, respectively. The effect of GTA crosslinking on paraffin oil latent heat was investigated by DSC and combined with the values of encapsulation efficiency and core content, supporting the compact shell formation.


Asunto(s)
Carboximetilcelulosa de Sodio/química , Quitosano/química , Composición de Medicamentos , Polielectrolitos/química , Cápsulas , Emulsiones , Concentración de Iones de Hidrógeno , Polielectrolitos/farmacología , Soluciones , Espectroscopía Infrarroja por Transformada de Fourier , Termodinámica
6.
Mar Drugs ; 12(12): 5801-16, 2014 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-25474188

RESUMEN

Linseed oil which has various biomedical applications was encapsulated by chitosan (Chi)-based microcapsules in the development of a suitable carrier. Oil droplets formed in oil-in-water emulsion using sodium dodecyl sulfate (SDS) as emulsifier was stabilized by Chi, and microcapsules with multilayers were formed by alternate additions of SDS and Chi solutions in an emulsion through electrostatic interaction. No chemical cross-linker was used in the study and the multilayer shell membrane was formed by ionic gelation using Chi and SDS. The rigidification of the shell membrane of microcapsules was achieved by alkali treatment in the presence of a small amount of 1-butanol to reduce aggregation. A trisodium citrate solution was used to stabilize the charge of microcapsules by ionic cross-linking. Effects of butanol during alkali treatment and citrate in post alkali treatment were monitored in terms of morphology and the chemical properties of microcapsules. Various characterization techniques revealed that the aggregation was decreased and surface roughness was increased with layer formation.


Asunto(s)
1-Butanol/química , Álcalis/química , Cápsulas/química , Quitosano/química , Citratos/química , Iones/química , Portadores de Fármacos/química , Emulsiones/química , Aceite de Linaza/química , Dodecil Sulfato de Sodio , Soluciones/química , Agua/química
7.
Ergonomics ; 57(7): 1078-89, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24734933

RESUMEN

Protective clothing with high insulation properties helps to keep the wearer safe from flames and other types of hazards. Such protection presents some drawbacks since it hinders movement and decreases comfort, in particular due to heat stress. In fact, sweating causes the accumulation of moisture which directly influences firefighters' performance, decreasing protection due to the increase in radiant heat flux. Vaporisation and condensation of hot moisture also induces skin burn. To evaluate the heat protection of protective clothing, Henrique's equation is used to predict the time leading to second-degree burn. The influence of moisture on protection is complex, i.e., at low radiant heat flux, an increase in moisture content increases protection, and also changes thermal properties. Better understanding of heat and mass transfer in protective clothing is required to develop enhanced protection and to prevent burn injuries. PRACTITIONER SUMMARY: This paper aims to contribute to a better understanding of heat and mass transfer inside firefighters' protective clothing to enhance safety. The focus is on the influence of moisture content and the prevention of steam burn.


Asunto(s)
Bomberos , Ropa de Protección/efectos adversos , Termodinámica , Temperatura Corporal/fisiología , Regulación de la Temperatura Corporal/fisiología , Quemaduras/prevención & control , Trastornos de Estrés por Calor/prevención & control , Humanos , Vapor/efectos adversos , Sudoración/fisiología , Volatilización , Agua/química
8.
J Funct Biomater ; 13(3)2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35997455

RESUMEN

Over the last two decades, bio-polymer fibers have attracted attention for their uses in gene therapy, tissue engineering, wound-healing, and controlled drug delivery. The most commonly used bio-polymers are bio-sourced synthetic polymers such as poly (glycolic acid), poly (lactic acid), poly (e-caprolactone), copolymers of polyglycolide and poly (3-hydroxybutyrate), and natural polymers such as chitosan, soy protein, and alginate. Among all of the bio-polymer fibers, alginate is endowed with its ease of sol-gel transformation, remarkable ion exchange properties, and acid stability. Blending alginate fibers with a wide range of other materials has certainly opened many new opportunities for applications. This paper presents an overview on the modification of alginate fibers with nano-particles, adhesive peptides, and natural or synthetic polymers, in order to enhance their properties. The application of alginate fibers in several areas such as cosmetics, sensors, drug delivery, tissue engineering, and water treatment are investigated. The first section is a brief theoretical background regarding the definition, the source, and the structure of alginate. The second part deals with the physico-chemical, structural, and biological properties of alginate bio-polymers. The third part presents the spinning techniques and the effects of the process and solution parameters on the thermo-mechanical and physico-chemical properties of alginate fibers. Then, the fourth part presents the additives used as fillers in order to improve the properties of alginate fibers. Finally, the last section covers the practical applications of alginate composite fibers.

9.
Polymers (Basel) ; 13(2)2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33418962

RESUMEN

Polyvinylidene fluoride (PVDF) is among the most attractive piezo-polymers due to its excellent piezoelectricity, lightweight, flexibility, high thermal stability, and chemical resistance. PVDF can exist under different forms of films, membranes, and (nano)fibers, and its piezoelectric property related to its ß phase content makes it interesting for energy harvesters and wearable applications. Research investigation shows that PVDF in the form of nanofibers prepared by electrospinning has more flexibility and better air permeability, which make them more suitable for these types of applications. Electrospinning is an efficient technique that produces PVDF nanofibers with a high ß phase fraction and crystallinity by aligning molecular dipoles (-CH2 and -CF2) along an applied voltage direction. Different nanofibers production techniques and more precisely the electrospinning method for producing PVDF nanofibers with optimal electrospinning parameters are the key focuses of this paper. This review article highlights recent studies to summarize the influence of electrospinning parameters such as process (voltage, distance, flow rate, and collector), solution (Mw, concentration, and solvent), and ambient (humidity and temperature) parameters to enhance the piezoelectric properties of PVDF nanofibers. In addition, recent development regarding the effect of adding nanoparticles in the structure of nanofibers on the improvement of the ß phase is reviewed. Finally, different methods of measuring piezoelectric properties of PVDF nanofibrous membrane are discussed.

10.
Polymers (Basel) ; 13(5)2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33668865

RESUMEN

The far-infrared ray (FIR) is one kind of electromagnetic wave employed for numerous bio-interactive applications such as body thermoregulation, infrared therapy, etc. Tuning the FIR-emitting property of the functional textile surface can initiate a new horizon to utilize this property in sportswear or even smart textiles. Ceramic particles were studied for their unique ability to constantly emit FIR rays. The purpose of this research is to characterize the FIR emission properties and the thermogravimetric analysis of ceramic-embedded polyurethane films. For this purpose, ceramic particles such as aluminum oxide, silicon dioxide, and titanium dioxide were incorporated (individually) with water-based polyurethane (WPU) binder by a sonication technique to make a thin layer of film. Significant improvement in FIR emissive property of the films was found when using different ceramic particles into the polyurethane films. Reflection and transmission at the FIR range were measured with a gold integrating sphere by Fourier-transform infrared (FTIR) spectrometer. The samples were also characterized by thermogravimetric analysis (TGA). Different physical tests, such as tensile strength and contact angle measurements, were performed to illustrate the mechanical properties of the films. The study suggested that the mechanical properties of the polyurethane films were significantly influenced by the addition of ceramic particles.

11.
Materials (Basel) ; 13(9)2020 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-32403411

RESUMEN

Electrospraying is considered to be a green, high-efficiency method for synthesizing phase change microcapsules (mPCMs) for possible applications in the fields of energy storage and thermal regulation. In this study, a coaxial nozzle was used to prepare n-hexadecane/polycaprolactone (PCL) microparticles. The objectives of this study were to investigate the influence of working parameters and solutions on morphology, particle size, thermal properties and encapsulation efficiency. Thus, three theoretical loading contents in n-hexadecane (30%, 50% and 70% w/w) and two concentrations of PCL (5 and 10% w/v) were used. The structures, morphologies and thermal properties of mPCMs were characterized by optical microscopy (OM), scanning electron microscopy (SEM), differential scanning calorimeter (DSC), and thermogravimetric analysis (TGA). Spherical microcapsules with a mean diameter of 10-20 µm were prepared. The increased concentration of n-hexadecane and PCL resulted in a change in the particle size distribution from a poly-disperse to monodisperse size distribution and in a change in the surface state from porous to non-porous. In addition, higher encapsulation efficiency (96%) and loading content (67%) were achieved by the coaxial nozzle using the high core-shell ratio (70/30) and 10% w/v of PCL. The latent heat of the mPCMs reached about 134 J.g-1. In addition, it was also observed that the thermal stability was improved by using a coaxial system rather than a single nozzle.

12.
Polymers (Basel) ; 11(1)2019 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-30960166

RESUMEN

In this study, two different types of industrial lignin (i.e., lignosulphonate lignin (LL) and kraft lignin (DL)) were exploited as charring agents with phosphorus-based flame retardants for polyamide 11 (PA11). The effect of lignins on the thermal stability and fire behavior of PA11 combined with phosphinate additives (namely, aluminum phosphinate (AlP) and zinc phosphinate (ZnP)) has been studied by thermogravimetric analysis (TGA), UL 94 vertical flame spread, and cone calorimetry tests. Various blends of flame retarded PA11 were prepared by melt process using a twin-screw extruder. Thermogravimetric analyses showed that the LL containing ternary blends are able to provide higher thermal stability, as well as a developed char residue. The decomposition of the phosphinates led to the formation of phosphate compounds in the condensed phase, which promotes the formation of a stable char. Flammability tests showed that LL/ZnP ternary blends were able to achieve self-extinction and V-1 classification; the other formulations showed a strong melt dripping and higher burning. In addition to this, cone calorimetry results showed that the most enhanced behavior was found when 10 wt % of LL and AlP were combined, which strongly reduced PHRR (-74%) and THR (-22%), due to the interaction between LL and AlP, which not only promotes char formation but also confers the stability to char in the condensed phase.

13.
Materials (Basel) ; 12(7)2019 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-30965684

RESUMEN

Flame retardancy of polymers is a recurring obligation for many applications. The development trend of biobased materials is no exception to this rule, and solutions of flame retardants from agro-resources give an advantage. Lignin is produced as a waste by-product from some industries, and can be used in the intumescent formation development as a source of carbon combined with an acid source. In this study, the flame retardancy of polyamide 11 (PA) is carried out by extrusion with a kraft lignin (KL) and ammonium polyphosphate (AP). The study of the optimal ratio between the KL and the AP makes it possible to optimize the fire properties as well as to reduce the cost and facilitates the implementation of the blend by a melting process. The properties of thermal decomposition and the fire reaction have been studied by thermogravimetric analyzes, pyrolysis combustion flow calorimetry (PCFC) and vertical flame spread tests (UL94). KL permits a charring effect delaying thermal degradation and decreases by 66% the peak of heat release rate in comparison with raw PA. The fire reaction of the ternary blends is improved even if KL-AP association does not have a synergy effect. The 25/75 and 33/67 KL/AP ratios in PA give an intumescence behavior under flame exposure.

14.
Pharmaceutics ; 11(8)2019 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-31405229

RESUMEN

In the field of pharmaceutical technology, significant attention has been paid on exploiting skin as a drug administration route. Considering the structural and chemical complexity of the skin barrier, many research works focused on developing an innovative way to enhance skin drug permeation. In this context, a new class of materials called bio-functional textiles has been developed. Such materials consist of the combination of advanced pharmaceutical carriers with textile materials. Therefore, they own the possibility of providing a wearable platform for continuous and controlled drug release. Notwithstanding the great potential of these materials, their large-scale application still faces some challenges. The present review provides a state-of-the-art perspective on the bio-functional textile technology analyzing the several issues involved. Firstly, the skin physiology, together with the dermatological delivery strategy, is keenly described in order to provide an overview of the problems tackled by bio-functional textiles technology. Secondly, an overview of the main dermatological nanocarriers is provided; thereafter the application of these nanomaterial to textiles is presented. Finally, the bio-functional textile technology is framed in the context of the different dermatological administration strategies; a comparative analysis that also considers how pharmaceutical regulation is conducted.

15.
Polymers (Basel) ; 10(9)2018 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-30960956

RESUMEN

Composites of polypropylene (PP) and water soluble poly(vinyl alcohol) (PVA) can become an environmentally friendly precursor in preparing porous material, and their biphasic morphology needs to be manipulated. In this work, PP-PVA extrudates were prepared with a twin-screw extruder, and different PP/PVA ratios were employed to manipulate the morphology of the blends. Afterwards, different silicas were imbedded within the blends to further regulate the biphasic microstructure. PVA continuity, as a vital parameter in obtaining porous material, was determined by selective extraction measurement, and PP-PVA biphasic morphology was characterized by scanning microscopy analyses (SEM). Rheological measurement was also performed to correlate the microstructure evolution of the blends. First, it was found that with the increment of PVA proportion, PVA continuity is raised gradually, and the microstructure of blends containing 40⁻50 wt % of PVA is approaching co-continuous. Second, the localization of silicas was predicted based on the wettability of silica and polymers, and it was also confirmed by TEM that different silicas showed selective distribution. It is inspiring that R972 nanoparticles were found mainly distributed at the interface, which gives a possibility in preparing a surface-modified porous material. The shape distribution and average size of PVA nodules were examined by analyzing the SEM images. It is indicated that silicas with different wettabilities play disparate roles in tuning the biphasic microstructures, leading to heterogeneous PVA continuity.

16.
Polymers (Basel) ; 10(10)2018 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-30961017

RESUMEN

Flash nanoprecipitation (FNP) is a widely used technique to prepare particulate carriers based on various polymers, and it was proven to be a promising technology for the industrial production of drug loaded nanoparticles. However, up to now, only its application to hydrophobic compounds has been deeply studied and the encapsulation of some strongly hydrophilic compounds, such as caffeine, remains a challenge. Caffeine loaded poly-ε-caprolactone (PCL) nanoparticles were produced in a confined impinging jet mixer using acetone as the solvent and water as the antisolvent. Caffeine was dissolved either in acetone or in water to assess the effects of two different process conditions. Nanoparticles properties were assessed in terms of loading capacity (LC%), encapsulation efficiency (EE%), and in vitro release kinetics. Samples were further characterized by dynamic light scattering, scanning electron microscopy, X-ray photo electron spectroscopy, and infrared spectroscopy to determine the size, morphology, and structure of nanoparticles. FNP was proved an effective technique for entrapping caffeine in PCL and to control its release behavior. The solvent used to solubilize caffeine influences the final structure of the obtained particles. It was observed that the active principle was preferentially adsorbed at the surface when using acetone, while with water, it was embedded in the matrix structure. The present research highlights the possibility of extending the range of applications of FNP to hydrophilic molecules.

17.
Carbohydr Polym ; 198: 281-293, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-30093001

RESUMEN

A series of chitosan/gelatin based microcapsules containing n-hexadecane was synthesized through complex phase coacervation from chitosan (CH) and type-B gelatin (GB), and crosslinked by glutaraldehyde (GTA). This research was conducted to clarify the influence of different parameters on the encapsulation process, i.e., the emulsion formation and the shell formation, using zeta potential and surface tension measurements, attenuated total reflectance (ATR), and thermal analysis such as differential scanning calorimetry (DSC). The optimal values of biopolymer ratios (TBP), crosslinker amount, emulsion time and feeding weight ratio of core/shell polymer (RCS) were identified. The stability of the emulsion was depended on the surface activity and TBP ratio, which also affected the droplet size distribution and the thickness of the shell. Furthermore, core content, encapsulation efficiency and thermal properties of the microcapsules were related to TBP and RCS; with the lowest RCS giving the best microcapsules features.

18.
Carbohydr Polym ; 173: 202-214, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28732859

RESUMEN

The behavior of aqueous chitosan (CH), type-B gelatin (GB) and CH-GB coacervate was studied on oil-in-water emulsion formulation at various pH and concentration ratio. The coacervate was formed by phase separation at ratios CH:GB, 1:10 to 1:1 with total biopolymer concentrations of 0.55%-1.0% (w/v) at pH 4.0-5.5. Soluble complexes were formed below pH 5.0 and coacervate formation was confirmed at pH 5.0 and above by zeta potential and UV-spectroscopy measurements. The coacervate formation was found maximum at the CH-GB ratios of 1:10 and 1:5 at pH 5.5. Formulated emulsions (>10µm droplets) using 1% (w/v) chitosan and GB were found stable (+52.5mv and creaming index 86%) and unstable respectively. Emulsion stabilized by mixed CH:GB 1:5 (3%w/v) had no creaming effect. The instability was attributed to the lower surface activity (K=5.0Lg-1) of pure GB compared to CH (K=14.3Lg-1). The formulation and methods can successfully tune the stability of the emulsions.

19.
Polymers (Basel) ; 8(7)2016 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-30974546

RESUMEN

A microencapsulated flame retardant was used in order to produce a flame retardant nonwoven substrate. Melamine-formaldehyde polymer-shell microcapsules, containing Afflamit® PLF 280 (resorcinol bis(diphenyl phosphate)) as the core substance, were coated by an outer thermoplastic wall (polystyrene (PS) or poly(methyl methacrylate)), before being applied to a core/sheet-type bi-component PET/co-PET spunbond nonwoven substrate using impregnation. The outer wall of the microcapsules was heated to the softening temperature of the thermoplastic shell in order to be bonded onto the textile fibres. The thermal stability of the microcapsules was examined using thermogravimetric analysis. The textile samples were observed with a scanning electron microscope, and the flame retardancy performance was evaluated using the NF P92-504 standard. The results show that the composition of the outer polymeric shell affected the thermal stability of the microcapsules, since the particles with a PS shell are more stable. Furthermore, the microcapsules were more located at the nonwoven surface without affecting the thickness of the samples. Based on the results of the NF P92-504 test, the flame spread rate was relatively low for all of the tested formulations. Only the formulation with a low content of PS was classified M2 while the others were M3.

20.
Polymers (Basel) ; 8(9)2016 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-30974606

RESUMEN

Using bio-based polymers to replace of polymers from petrochemicals in the manufacture of textile fibers is a possible way to improve sustainable development for the textile industry. Polylactic acid (PLA) is one of the available bio-based polymers. One way to improve the fire behavior of this bio-based polymer is to add an intumescent formulation mainly composed of acid and carbon sources. In order to optimize the amount of bio-based product in the final material composition, lignin from wood waste was selected as the carbon source. Different formulations of and/or ammonium polyphosphate (AP) were prepared by melt extrusion and then hot-pressed into sheets. The thermal properties (thermogravimetric analyses (TGA) and differential scanning calorimetry (DSC)) and fire properties (UL-94) were measured. The spinnability of the various composites was evaluated. The mechanical properties and physical aspect (microscopy) of PLA multifilaments with lignin (LK) were checked. A PLA multifilament with up to 10 wt % of intumescent formulation was processed, and the fire behavior of PLA fabrics with lignin/AP formulation was studied by cone calorimeter.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA