Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Eur J Neurol ; 31(6): e16264, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38470068

RESUMEN

BACKGROUND: This update of the guideline on the management of amyotrophic lateral sclerosis (ALS) was commissioned by the European Academy of Neurology (EAN) and prepared in collaboration with the European Reference Network for Neuromuscular Diseases (ERN EURO-NMD) and the support of the European Network for the Cure ALS (ENCALS) and the European Organization for Professionals and Patients with ALS (EUpALS). METHODS: Grading of Recommendations Assessment, Development, and Evaluation (GRADE) methodology was used to assess the effectiveness of interventions for ALS. Two systematic reviewers from Cochrane Response supported the guideline panel. The working group identified a total of 26 research questions, performed systematic reviews, assessed the quality of the available evidence, and made specific recommendations. Expert consensus statements were provided where insufficient evidence was available. RESULTS: A guideline mapping effort revealed only one other ALS guideline that used GRADE methodology (a National Institute for Health and Care Excellence [NICE] guideline). The available evidence was scarce for many research questions. Of the 26 research questions evaluated, the NICE recommendations could be adapted for 8 questions. Other recommendations required updates of existing systematic reviews or de novo reviews. Recommendations were made on currently available disease-modifying treatments, multidisciplinary care, nutritional and respiratory support, communication aids, psychological support, treatments for common ALS symptoms (e.g., muscle cramps, spasticity, pseudobulbar affect, thick mucus, sialorrhea, pain), and end-of-life management. CONCLUSIONS: This update of the guideline using GRADE methodology provides a framework for the management of ALS. The treatment landscape is changing rapidly, and further updates will be prepared when additional evidence becomes available.


Asunto(s)
Esclerosis Amiotrófica Lateral , Esclerosis Amiotrófica Lateral/terapia , Humanos , Europa (Continente) , Neurología/normas , Neurología/métodos , Enfermedades Neuromusculares/terapia
2.
Cell Mol Life Sci ; 80(6): 150, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37184603

RESUMEN

Amyotrophic lateral sclerosis (ALS) is the most common motor neuron (MN) disease in adults with no curative treatment. Neurofilament (NF) level in patient' fluids have recently emerged as the prime biomarker of ALS disease progression, while NF accumulation in MNs of patients is the oldest and one of the best pathological hallmarks. However, the way NF accumulations could lead to MN degeneration remains unknown. To assess NF accumulations and study the impact on MNs, we compared MNs derived from induced pluripotent stem cells (iPSC) of patients carrying mutations in C9orf72, SOD1 and TARDBP genes, the three main ALS genetic causes. We show that in all mutant MNs, light NF (NF-L) chains rapidly accumulate in MN soma, while the phosphorylated heavy/medium NF (pNF-M/H) chains pile up in axonal proximal regions of only C9orf72 and SOD1 MNs. Excitability abnormalities were also only observed in these latter MNs. We demonstrate that the integrity of the MN axonal initial segment (AIS), the region of action potential initiation and responsible for maintaining axonal integrity, is impaired in the presence of pNF-M/H accumulations in C9orf72 and SOD1 MNs. We establish a strong correlation between these pNF-M/H accumulations, an AIS distal shift, increased axonal calibers and modified repartition of sodium channels. The results expand our understanding of how NF accumulation could dysregulate components of the axonal cytoskeleton and disrupt MN homeostasis. With recent cumulative evidence that AIS alterations are implicated in different brain diseases, preserving AIS integrity could have important therapeutic implications for ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Filamentos Intermedios , Superóxido Dismutasa-1/genética , Proteína C9orf72/genética , Neuronas Motoras/patología
3.
N Engl J Med ; 383(2): 109-119, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32640130

RESUMEN

BACKGROUND: Tofersen is an antisense oligonucleotide that mediates the degradation of superoxide dismutase 1 (SOD1) messenger RNA to reduce SOD1 protein synthesis. Intrathecal administration of tofersen is being studied for the treatment of amyotrophic lateral sclerosis (ALS) due to SOD1 mutations. METHODS: We conducted a phase 1-2 ascending-dose trial evaluating tofersen in adults with ALS due to SOD1 mutations. In each dose cohort (20, 40, 60, or 100 mg), participants were randomly assigned in a 3:1 ratio to receive five doses of tofersen or placebo, administered intrathecally for 12 weeks. The primary outcomes were safety and pharmacokinetics. The secondary outcome was the change from baseline in the cerebrospinal fluid (CSF) SOD1 concentration at day 85. Clinical function and vital capacity were measured. RESULTS: A total of 50 participants underwent randomization and were included in the analyses; 48 participants received all five planned doses. Lumbar puncture-related adverse events were observed in most participants. Elevations in CSF white-cell count and protein were reported as adverse events in 4 and 5 participants, respectively, who received tofersen. Among participants who received tofersen, one died from pulmonary embolus on day 137, and one from respiratory failure on day 152; one participant in the placebo group died from respiratory failure on day 52. The difference at day 85 in the change from baseline in the CSF SOD1 concentration between the tofersen groups and the placebo group was 2 percentage points (95% confidence interval [CI], -18 to 27) for the 20-mg dose, -25 percentage points (95% CI, -40 to -5) for the 40-mg dose, -19 percentage points (95% CI, -35 to 2) for the 60-mg dose, and -33 percentage points (95% CI, -47 to -16) for the 100-mg dose. CONCLUSIONS: In adults with ALS due to SOD1 mutations, CSF SOD1 concentrations decreased at the highest concentration of tofersen administered intrathecally over a period of 12 weeks. CSF pleocytosis occurred in some participants receiving tofersen. Lumbar puncture-related adverse events were observed in most participants. (Funded by Biogen; ClinicalTrials.gov number, NCT02623699; EudraCT number, 2015-004098-33.).


Asunto(s)
Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Oligonucleótidos Antisentido/administración & dosificación , Oligonucleótidos/administración & dosificación , Superóxido Dismutasa-1/líquido cefalorraquídeo , Adulto , Esclerosis Amiotrófica Lateral/líquido cefalorraquídeo , Esclerosis Amiotrófica Lateral/genética , Progresión de la Enfermedad , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Femenino , Cefalea/inducido químicamente , Humanos , Inyecciones Espinales/efectos adversos , Filamentos Intermedios , Leucocitosis/inducido químicamente , Masculino , Persona de Mediana Edad , Mutación , Oligonucleótidos/efectos adversos , Oligonucleótidos/farmacocinética , Oligonucleótidos Antisentido/efectos adversos , Oligonucleótidos Antisentido/farmacocinética , Superóxido Dismutasa-1/genética , Capacidad Vital
4.
Int J Mol Sci ; 23(10)2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35628504

RESUMEN

Mutations in profilin 1 (PFN1) have been identified in rare familial cases of Amyotrophic Lateral Sclerosis (ALS). PFN1 is involved in multiple pathways that could intervene in ALS pathology. However, the specific pathogenic role of PFN1 mutations in ALS is still not fully understood. We hypothesized that PFN1 could play a role in regulating autophagy pathways and that PFN1 mutations could disrupt this function. We used patient cells (lymphoblasts) or tissue (post-mortem) carrying PFN1 mutations (M114T and E117G), and designed experimental models expressing wild-type or mutant PFN1 (cell lines and novel PFN1 mice established by lentiviral transgenesis) to study the effects of PFN1 mutations on autophagic pathway markers. We observed no accumulation of PFN1 in the spinal cord of one E117G mutation carrier. Moreover, in patient lymphoblasts and transfected cell lines, the M114T mutant PFN1 protein was unstable and deregulated the RAB9-mediated alternative autophagy pathway involved in the clearance of damaged mitochondria. In vivo, motor neurons expressing M114T mutant PFN1 showed mitochondrial abnormalities. Our results demonstrate that the M114T PFN1 mutation is more deleterious than the E117G variant in patient cells and experimental models and suggest a role for the RAB9-dependent autophagic pathway in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Profilinas , Proteínas de Unión al GTP rab , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Autofagia/genética , Homeostasis , Humanos , Ratones , Mitocondrias/metabolismo , Mutación , Profilinas/genética , Profilinas/metabolismo , Proteínas de Unión al GTP rab/metabolismo
5.
J Neurol Neurosurg Psychiatry ; 92(5): 479-484, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33408239

RESUMEN

OBJECTIVES: To determine whether the familial clustering of amyotrophic lateral sclerosis (ALS) cases and the phenotype of the disease may help identify the pathogenic genes involved. METHODS: We conducted a targeted next-generation sequencing analysis on 235 French familial ALS (FALS), unrelated probands to identify mutations in 30 genes linked to the disease. The genealogy, that is, number of cases and generations with ALS, gender, age, site of onset and the duration of the disease were analysed. RESULTS: Regarding the number of generations, 49 pedigrees had only one affected generation, 152 had two affected generations and 34 had at least three affected generations. Among the 149 pedigrees (63.4%) for which a deleterious variant was found, an abnormal G4C2 expansion in C9orf72 was found in 98 cases as well as SOD1, TARBP or FUS mutations in 30, 9 and 7 cases, respectively. Considering pedigrees from the number of generations, abnormal G4C2 expansion in C9orf72 was more frequent in pedigrees with pairs of affected ALS cases, which represented 65.2% of our cohort. SOD1 mutation involved all types of pedigrees. No TARDBP nor FUS mutation was present in monogenerational pedigrees. TARDBP mutation predominated in bigenerational pedigrees with at least three cases and FUS mutation in multigenerational pedigrees with more than seven cases, on average, and with an age of onset younger than 45 years. CONCLUSION: Our results suggest that familial clustering, phenotypes and genotypes are interconnected in FALS, and thus it might be possible to target the genetic screening from the familial architecture and the phenotype of ALS cases.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/genética , Mutación , Anciano , Análisis por Conglomerados , Análisis Mutacional de ADN , Proteínas de Unión al ADN/genética , Femenino , Pruebas Genéticas , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Linaje , Fenotipo , Proteína FUS de Unión a ARN/genética , Superóxido Dismutasa-1/genética
6.
J Neurol Neurosurg Psychiatry ; 92(9): 942-949, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33785574

RESUMEN

OBJECTIVE: Mutations in superoxide dismutase 1 gene (SOD1), encoding copper/zinc superoxide dismutase protein, are the second most frequent high penetrant genetic cause for amyotrophic lateral sclerosis (ALS) motor neuron disease in populations of European descent. More than 200 missense variants are reported along the SOD1 protein. To limit the production of these aberrant and deleterious SOD1 species, antisense oligonucleotide approaches have recently emerged and showed promising effects in clinical trials. To offer the possibility to any patient with SOD1-ALS to benefit of such a gene therapy, it is necessary to ascertain whether any variant of unknown significance (VUS), detected for example in SOD1 non-coding sequences, is pathogenic. METHODS: We analysed SOD1 mutation distribution after SOD1 sequencing in a large cohort of 470 French familial ALS (fALS) index cases. RESULTS: We identified a total of 27 SOD1 variants in 38 families including two SOD1 variants located in nearsplice or intronic regions of the gene. The pathogenicity of the c.358-10T>G nearsplice SOD1 variant was corroborated based on its high frequency (as the second most frequent SOD1 variant) in French fALS, the segregation analysis confirmed in eight affected members of a large pedigree, the typical SOD1-related phenotype observed (with lower limb onset and prominent lower motor neuron involvement), and findings on postmortem tissues showing SOD1 misaccumulation. CONCLUSIONS: Our results highlighted nearsplice/intronic mutations in SOD1 are responsible for a significant portion of French fALS and suggested the systematic analysis of the SOD1 mRNA sequence could become the method of choice for SOD1 screening, not to miss these specific cases.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Mutación , Linaje , Superóxido Dismutasa-1/genética , Adulto , Anciano , Anciano de 80 o más Años , Análisis Mutacional de ADN , Femenino , Pruebas Genéticas , Terapia Genética , Humanos , Masculino , Persona de Mediana Edad , Fenotipo
7.
Ann Neurol ; 86(2): 158-167, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31177556

RESUMEN

OBJECTIVE: C9orf72 hexanucleotide repeats expansions account for almost half of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) cases. Recent imaging studies in asymptomatic C9orf72 carriers have demonstrated cerebral white (WM) and gray matter (GM) degeneration before the age of 40 years. The objective of this study was to characterize cervical spinal cord (SC) changes in asymptomatic C9orf72 hexanucleotide carriers. METHODS: Seventy-two asymptomatic individuals were enrolled in a prospective study of first-degree relatives of ALS and FTD patients carrying the c9orf72 hexanucleotide expansion. Forty of them carried the pathogenic mutation (C9+ ). Each subject underwent quantitative cervical cord imaging. Structural GM and WM metrics and diffusivity parameters were evaluated at baseline and 18 months later. Data were analyzed in C9+ and C9- subgroups, and C9+ subjects were further stratified by age. RESULTS: At baseline, significant WM atrophy was detected at each cervical vertebral level in C9+ subjects older than 40 years without associated changes in GM and diffusion tensor imaging parameters. At 18-month follow-up, WM atrophy was accompanied by significant corticospinal tract (CST) fractional anisotropy (FA) reductions. Intriguingly, asymptomatic C9+ subjects older than 40 years with family history of ALS (as opposed to FTD) also exhibited significant CST FA reduction at baseline. INTERPRETATION: Cervical SC imaging detects WM atrophy exclusively in C9+ subjects older than 40 years, and progressive CST FA reductions can be identified on 18-month follow-up. Cervical SC magnetic resonance imaging readily captures presymptomatic pathological changes and disease propagation in c9orf72-associated conditions. ANN NEUROL 2019;86:158-167.


Asunto(s)
Enfermedades Asintomáticas , Proteína C9orf72/genética , Heterocigoto , Mutación/genética , Neuroimagen/tendencias , Médula Espinal/diagnóstico por imagen , Adulto , Anciano , Esclerosis Amiotrófica Lateral/diagnóstico por imagen , Esclerosis Amiotrófica Lateral/genética , Estudios de Seguimiento , Demencia Frontotemporal/diagnóstico por imagen , Demencia Frontotemporal/genética , Humanos , Estudios Longitudinales , Persona de Mediana Edad , Estudios Prospectivos , Adulto Joven
8.
Eur Respir J ; 53(2)2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30523161

RESUMEN

Amyotrophic lateral sclerosis (ALS) patients show progressive respiratory muscle weakness leading to death from respiratory failure. However, there are no data on diaphragm histological changes in ALS patients and how they correlate with routine respiratory measurements.We collected 39 diaphragm biopsies concomitantly with laparoscopic insertion of intradiaphragmatic electrodes during a randomised controlled trial evaluating early diaphragm pacing in ALS (https://clinicaltrials.gov; NCT01583088). Myofibre type, size and distribution were evaluated by immunofluorescence microscopy and correlated with spirometry, respiratory muscle strength and phrenic nerve conduction parameters. The relationship between these variables and diaphragm atrophy was assessed using multivariate regression models.All patients exhibited significant slow- and fast-twitch diaphragmatic atrophy. Vital capacity (VC), maximal inspiratory pressure, sniff nasal inspiratory pressure (SNIP) and twitch transdiaphragmatic pressure did not correlate with the severity of diaphragm atrophy. Inspiratory capacity (IC) correlated modestly with slow-twitch myofibre atrophy. Supine fall in VC correlated weakly with fast-twitch myofibre atrophy. Multivariate analysis showed that IC, SNIP and functional residual capacity were independent predictors of slow-twitch diaphragmatic atrophy, but not fast-twitch atrophy.Routine respiratory tests are poor predictors of diaphragm structural changes. Improved detection of diaphragm atrophy is essential for clinical practice and for management of trials specifically targeting diaphragm muscle function.


Asunto(s)
Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/fisiopatología , Atrofia/diagnóstico , Atrofia/fisiopatología , Diafragma/fisiopatología , Respiración , Tejido Adiposo/patología , Biopsia , Electrodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Debilidad Muscular/fisiopatología , Análisis de Regresión , Pruebas de Función Respiratoria , Insuficiencia Respiratoria/fisiopatología , Músculos Respiratorios/fisiopatología , Ultrasonografía , Capacidad Vital
9.
Acta Neuropathol ; 138(5): 783-793, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31144027

RESUMEN

Granulovacuolar degeneration (GVD) is usually found in Alzheimer's disease (AD) cases or in elderly individuals. Its severity correlates positively with the density of neurofibrillary tangles (NFTs). Mechanisms underlying GVD formation are unknown. We assessed the prevalence and distribution of GVD in cases with TDP-43-related frontotemporal lobar degeneration (FTLD-TDP) and amyotrophic lateral sclerosis (ALS-TDP). Consecutively autopsied cases with FTLD/ALS-TDP and C9orf72 mutations (FTLD/ALS-C9; N = 29), cases with FTLD/ALS-TDP without C9orf72 mutations (FTLD/ALS-nonC9; N = 46), and age-matched healthy controls (N = 40) were studied. The prevalence of GVD was significantly higher in the FTLD/ALS-C9 cases (26/29 cases) than in the FTLD/ALS-nonC9 cases (15/46 cases; Fisher exact test; p < 2×10-6) or in the control group (12/40 individuals; p < 1×10-6). Average Braak stages and ages of death were not significantly different among the groups. The CA2 sector was most frequently affected in the FTLD/ALS-C9 group, whereas the CA1/subiculum was the most vulnerable area in the other groups. Extension of GVD correlated with the clinical duration of the disease in the FTLD/ALS-C9 cases but not in the FTLD/ALS-nonC9 cases. The GVD-containing neurons frequently had dipeptide repeat (DPR) protein inclusions. GVD granules labeled with antibodies directed against charged multivesicular body protein 2B or casein kinase 1δ were attached to DPR inclusions within GVD. Our results suggest that development of GVD and DPR inclusions is related to common pathogenic mechanisms and that GVD is not only associated with NFTs seen in AD cases or aging individuals.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/genética , Degeneración Lobar Frontotemporal/genética , Mutación/genética , Anciano , Esclerosis Amiotrófica Lateral/epidemiología , Esclerosis Amiotrófica Lateral/patología , Expansión de las Repeticiones de ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Degeneración Lobar Frontotemporal/epidemiología , Humanos , Cuerpos de Inclusión/patología , Masculino , Persona de Mediana Edad , Ovillos Neurofibrilares/patología , Neuronas/patología , Prevalencia
11.
Nature ; 488(7412): 499-503, 2012 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-22801503

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a late-onset neurodegenerative disorder resulting from motor neuron death. Approximately 10% of cases are familial (FALS), typically with a dominant inheritance mode. Despite numerous advances in recent years, nearly 50% of FALS cases have unknown genetic aetiology. Here we show that mutations within the profilin 1 (PFN1) gene can cause FALS. PFN1 is crucial for the conversion of monomeric (G)-actin to filamentous (F)-actin. Exome sequencing of two large ALS families showed different mutations within the PFN1 gene. Further sequence analysis identified 4 mutations in 7 out of 274 FALS cases. Cells expressing PFN1 mutants contain ubiquitinated, insoluble aggregates that in many cases contain the ALS-associated protein TDP-43. PFN1 mutants also display decreased bound actin levels and can inhibit axon outgrowth. Furthermore, primary motor neurons expressing mutant PFN1 display smaller growth cones with a reduced F/G-actin ratio. These observations further document that cytoskeletal pathway alterations contribute to ALS pathogenesis.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Predisposición Genética a la Enfermedad/genética , Proteínas Mutantes/metabolismo , Mutación/genética , Profilinas/genética , Profilinas/metabolismo , Actinas/metabolismo , Secuencia de Aminoácidos , Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Axones/metabolismo , Axones/patología , Células Cultivadas , Exoma/genética , Femenino , Conos de Crecimiento/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Judíos/genética , Masculino , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Proteínas Mutantes/genética , Linaje , Conformación Proteica , Ubiquitinación , Población Blanca/genética
12.
Hum Mutat ; 38(5): 556-568, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28144995

RESUMEN

In this study, we describe the phenotypic spectrum of distal hereditary motor neuropathy caused by mutations in the small heat shock proteins HSPB1 and HSPB8 and investigate the functional consequences of newly discovered variants. Among 510 unrelated patients with distal motor neuropathy, we identified mutations in HSPB1 (28 index patients/510; 5.5%) and HSPB8 (four index patients/510; 0.8%) genes. Patients have slowly progressive distal (100%) and proximal (13%) weakness in lower limbs (100%), mild lower limbs sensory involvement (31%), foot deformities (73%), progressive distal upper limb weakness (29%), mildly raised serum creatine kinase levels (100%), and central nervous system involvement (9%). We identified 12 HSPB1 and four HSPB8 mutations, including five and three not previously reported. Transmission was either dominant (78%), recessive (3%), or de novo (19%). Three missense mutations in HSPB1 (Pro7Ser, Gly53Asp, and Gln128Arg) cause hyperphosphorylation of neurofilaments, whereas the C-terminal mutant Ser187Leu triggers protein aggregation. Two frameshift mutations (Leu58fs and Ala61fs) create a premature stop codon leading to proteasomal degradation. Two mutations in HSPB8 (Lys141Met/Asn) exhibited increased binding to Bag3. We demonstrate that HSPB1 and HSPB8 mutations are a major cause of inherited motor axonal neuropathy. Mutations lead to diverse functional outcomes further demonstrating the pleotropic character of small heat shock proteins.


Asunto(s)
Estudios de Asociación Genética , Proteínas de Choque Térmico Pequeñas/genética , Mutación , Adolescente , Adulto , Alelos , Sustitución de Aminoácidos , Biomarcadores , Línea Celular , Niño , Análisis Mutacional de ADN , Femenino , Frecuencia de los Genes , Genotipo , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico/genética , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Chaperonas Moleculares , Enfermedad de la Neurona Motora/diagnóstico , Enfermedad de la Neurona Motora/genética , Familia de Multigenes , Fenotipo , Proteínas Serina-Treonina Quinasas/genética , Adulto Joven
13.
J Neurol Neurosurg Psychiatry ; 87(10): 1045-50, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27090433

RESUMEN

INTRODUCTION: Non-invasive ventilation (NIV) is part of standard care in amyotrophic lateral sclerosis (ALS). Intolerance or unavailability of NIV, as well as the quality of correction of nocturnal hypoventilation, has a direct impact on prognosis. OBJECTIVES: We describe the importance of NIV failure due to upper airway obstructive events, the clinical characteristics, as well as their impact on the prognosis of ALS. METHODS: Retrospective analysis of the data of 190 patients with ALS and NIV in a single centre for the period 2011-2014. 179 patients tolerating NIV for more than 4 h per night without leaks were analysed. RESULTS: Among the 179 patients, after correction of leaks, 73 remained inadequately ventilated at night (defined as more than 5% of the night spent at <90% of SpO2), as a result of obstructive events in 67% of cases (n=48). Patients who remained inadequately ventilated after optimal adjustment of ventilator settings presented with shorter survival than adequately ventilated patients. Unexpectedly, patients with upper airway obstructive events without nocturnal desaturation and in whom no adjustment of treatment was therefore performed also presented with shorter survival. On initiation of NIV, no difference was demonstrated between patients with and without upper airway obstructive events. In all patients, upper airway obstruction was concomitant with reduction of ventilatory drive. CONCLUSIONS: This study shows that upper airway obstruction during NIV occurs in patients with ALS and is associated with poorer prognosis. Such events should be identified as they can be corrected by adjusting ventilator settings.


Asunto(s)
Obstrucción de las Vías Aéreas/mortalidad , Obstrucción de las Vías Aéreas/terapia , Esclerosis Amiotrófica Lateral/mortalidad , Esclerosis Amiotrófica Lateral/terapia , Ventilación no Invasiva , Anciano , Terapia Combinada , Comorbilidad , Femenino , Hospitales Universitarios , Humanos , Masculino , Persona de Mediana Edad , Oxígeno/sangre , Polisomnografía , Pronóstico , Insuficiencia Respiratoria/mortalidad , Insuficiencia Respiratoria/terapia , Estudios Retrospectivos , Riluzol/uso terapéutico , Análisis de Supervivencia
15.
Brain ; 136(Pt 8): 2359-68, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23824486

RESUMEN

Amyotrophic lateral sclerosis is a typically rapidly progressive neurodegenerative disorder affecting motor neurons leading to progressive muscle paralysis and death, usually from respiratory failure, in 3-5 years. Some patients have slow disease progression and prolonged survival, but the underlying mechanisms remain poorly understood. Riluzole, the only approved treatment, only modestly prolongs survival and has no effect on muscle function. In the early phase of the disease, motor neuron loss is initially compensated for by collateral reinnervation, but over time this compensation fails, leading to progressive muscle wasting. The crucial role of muscle histone deacetylase 4 and its regulator microRNA-206 in compensatory reinnervation and disease progression was recently suggested in a mouse model of amyotrophic lateral sclerosis (transgenic mice carrying human mutations in the superoxide dismutase gene). Here, we sought to investigate whether the microRNA-206-histone deacetylase 4 pathway plays a role in muscle compensatory reinnervation in patients with amyotrophic lateral sclerosis and thus contributes to disease outcome differences. We studied muscle reinnervation using high-resolution confocal imaging of neuromuscular junctions in muscle samples obtained from 11 patients with amyotrophic lateral sclerosis, including five long-term survivors. We showed that the proportion of reinnervated neuromuscular junctions was significantly higher in long-term survivors than in patients with rapidly progressive disease. We analysed the expression of muscle candidate genes involved in the reinnervation process and showed that histone deacetylase 4 upregulation was significantly greater in patients with rapidly progressive disease and was negatively correlated with the extent of muscle reinnervation and functional outcome. Conversely, the proposed regulator of histone deacetylase 4, microRNA-206, was upregulated in both patient groups, but did not correlate with disease progression or reinnervation. We conclude that muscle expression of histone deacetylase 4 may be a key factor for muscle reinnervation and disease progression in patients with amyotrophic lateral sclerosis. Specific histone deacetylase 4 inhibitors may then constitute a therapeutic approach to enhancing motor performance and slowing disease progression in amyotrophic lateral sclerosis.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Histona Desacetilasas/genética , MicroARNs/genética , Neuronas Motoras/metabolismo , Músculo Esquelético/inervación , Proteínas Represoras/genética , Adulto , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Progresión de la Enfermedad , Femenino , Histona Desacetilasas/metabolismo , Humanos , Masculino , MicroARNs/metabolismo , Persona de Mediana Edad , Neuronas Motoras/patología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Unión Neuromuscular/genética , Unión Neuromuscular/metabolismo , Unión Neuromuscular/patología , Proteínas Represoras/metabolismo , Sobrevivientes , Regulación hacia Arriba
17.
EBioMedicine ; 99: 104931, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38150853

RESUMEN

BACKGROUND: SCA27B caused by FGF14 intronic heterozygous GAA expansions with at least 250 repeats accounts for 10-60% of cases with unresolved cerebellar ataxia. We aimed to assess the size and frequency of FGF14 expanded alleles in individuals with cerebellar ataxia as compared with controls and to characterize genetic and clinical variability. METHODS: We sized this repeat in 1876 individuals from France sampled for research purposes in this cross-sectional study: 845 index cases with cerebellar ataxia and 324 affected relatives, 475 controls, as well as 119 cases with spastic paraplegia, and 113 with familial essential tremor. FINDINGS: A higher frequency of expanded allele carriers in index cases with ataxia was significant only above 300 GAA repeats (10.1%, n = 85) compared with controls (1.1%, n = 5) (p < 0.0001) whereas GAA250-299 alleles were detected in 1.7% of both groups. Eight of 14 index cases with GAA250-299 repeats had other causal pathogenic variants (4/14) and/or discordance of co-segregation (5/14), arguing against GAA causality. We compared the clinical signs in 127 GAA≥300 carriers to cases with non-expanded GAA ataxia resulting in defining a key phenotype triad: onset after 45 years, downbeat nystagmus, episodic ataxic features including diplopia; and a frequent absence of dysarthria. All maternally transmitted alleles above 100 GAA were unstable with a median expansion of +18 repeats per generation (r2 = 0.44; p < 0.0001). In comparison, paternally transmitted alleles above 100 GAA mostly decreased in size (-15 GAA (r2 = 0.63; p < 0.0001)), resulting in the transmission bias observed in SCA27B pedigrees. INTERPRETATION: SCA27B diagnosis must consider both the phenotype and GAA expansion size. In carriers of GAA250-299 repeats, the absence of documented familial transmission and a presentation deviating from the key SCA27B phenotype, should prompt the search for an alternative cause. Affected fathers have a reduced risk of having affected children, which has potential implications for genetic counseling. FUNDING: This work was supported by the Fondation pour la Recherche Médicale, grant number 13338 to JLM, the Association Connaître les Syndrome Cérébelleux - France (to GS) and by the European Union's Horizon 2020 research and innovation program under grant agreement No 779257 ("SOLVE-RD" to GS). DP holds a Fellowship award from the Canadian Institutes of Health Research (CIHR). SK received a grant (01GM1905C) from the Federal Ministry of Education and Research, Germany, through the TreatHSP network. This work was supported by the Australian Government National Health and Medical Research Council grants (GNT2001513 and MRFF2007677) to MB and PJL.


Asunto(s)
Ataxia Cerebelosa , Ataxia de Friedreich , Niño , Humanos , Ataxia/diagnóstico , Ataxia/genética , Australia , Canadá , Ataxia Cerebelosa/diagnóstico , Ataxia Cerebelosa/genética , Estudios Transversales , Ataxia de Friedreich/genética
18.
Hum Mutat ; 34(7): 953-60, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23568759

RESUMEN

The dihydropyrimidinase-like 3 (DPYSL3) or Collapsin Response Mediator Protein 4a (CRMP4a) expression is modified in neurodegeneration and is involved in several ALS-associated pathways including axonal transport, glutamate excitotoxicity, and oxidative stress. The objective of the study was to analyze CRMP4 as a risk factor for ALS. We analyzed the DPYSL3/CRMP4 gene in French ALS patients (n = 468) and matched-controls (n = 394). We subsequently examined a variant in a Swedish population (184 SALS, 186 controls), and evaluated its functional effects on axonal growth and survival in motor neuron cell culture. The rs147541241:A>G missense mutation occurred in higher frequency among French ALS patients (odds ratio = 2.99) but the association was not confirmed in the Swedish population. In vitro expression of mutated DPYSL3 in motor neurons reduced axonal growth and accelerated cell death compared with wild type protein. Thus, the association between the rs147541241 variant and ALS was limited to the French population, highlighting the geographic particularities of genetic influences (risks, contributors). The identified variant appears to shorten motor neuron survival through a detrimental effect on axonal growth and CRMP4 could act as a key unifier in transduction pathways leading to neurodegeneration through effects on early axon development.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Neuronas Motoras/metabolismo , Proteínas Musculares/genética , Mutación Missense , Esclerosis Amiotrófica Lateral/epidemiología , Esclerosis Amiotrófica Lateral/etnología , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Axones/metabolismo , Muerte Celular/genética , Células Cultivadas , Femenino , Francia/epidemiología , Humanos , Masculino , Ratones , Neuronas Motoras/citología , Suecia/epidemiología
19.
Acta Neuropathol ; 125(4): 511-22, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23417734

RESUMEN

Mutations in SQSTM1 encoding the sequestosome 1/p62 protein have recently been identified in familial and sporadic cases of amyotrophic lateral sclerosis (ALS). p62 is a component of the ubiquitin inclusions detected in degenerating neurons in ALS patients. We sequenced SQSTM1 in 90 French patients with familial ALS (FALS) and 74 autopsied ALS cases with sporadic ALS (SALS). We identified, at the heterozygote state, one missense c.1175C>T, p.Pro392Leu (exon 8) in one of our FALS and one substitution in intron 7 (the c.1165+1G>A, previously called IVS7+1 G-A, A390X) affecting the exon 7 splicing site in one SALS. These mutations that are located in the ubiquitin-associated domain (UBA domain) of the p62 protein have already been described in Paget's disease and ALS patients carrying these mutations had both concomitant Paget's disease. However, we also identified two novel missense mutations in two SALS: the c.259A>G, p.Met87Val in exon 2 and the c.304A>G, p.Lys102Glu in exon 3. These mutations that were not detected in 360 control subjects are possibly pathogenic. Neuropathology analysis of three patients carrying SQSTM1 variants revealed the presence of large round p62 inclusions in motor neurons, and immunoblot analysis showed an increased p62 and TDP-43 protein levels in the spinal cord. Our results confirm that SQSTM1 gene mutations could be the cause or genetic susceptibility factor of ALS in some patients.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Esclerosis Amiotrófica Lateral/genética , Encéfalo/patología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Esclerosis Amiotrófica Lateral/patología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Heterocigoto , Humanos , Masculino , Persona de Mediana Edad , Mutación , Proteína Sequestosoma-1 , Ubiquitina/genética , Ubiquitina/metabolismo
20.
J Med Genet ; 49(4): 258-63, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22499346

RESUMEN

BACKGROUND: Expanded GGGGCC hexanucleotide repeats in the promoter of the C9ORF72 gene have recently been identified in frontotemporal dementia (FTD), Amyotrophic Lateral Sclerosis (ALS) and ALS-FTD and appear as the most common genetic cause of familial (FALS) and sporadic (SALS) forms of ALS. METHODS: We searched for the C9ORF72 repeat expansion in 950 French ALS patients (225 FALS and 725 SALS) and 580 control subjects and performed genotype-phenotype correlations. RESULTS: The repeat expansion was present in 46% of FALS, 8% of SALS and 0% of controls. Phenotype comparisons were made between FALS patients with expanded C9ORF72 repeats and patients carrying another ALS-related gene (SOD1, TARDBP, FUS) or a yet unidentified genetic defect. SALS patients with and without C9ORF72 repeat expansions were also compared. The C9ORF72 group presented more frequent bulbar onset both in FALS (p<0.0001 vs SOD1, p=0.002 vs TARDBP, p=0.011 vs FUS, p=0.0153 vs other FALS) and SALS (p=0.047). FALS patients with C9ORF72 expansions had more frequent association with FTD than the other FALS patients (p<0.0001 vs SOD1, p=0.04 vs TARDBP, p=0.004 vs FUS, p=0.03 vs other FALS). C9ORF72-linked FALS patients presented an older age of onset than SOD1 (p=0.0139) or FUS mutation (p<0.0001) carriers. Disease duration was shorter for C9ORF72 expansion carriers than for SOD1 (p<0.0001) and TARDBP (p=0.0242) carriers, other FALS (p<0.0001) and C9ORF72-negative SALS (p=0.0006). CONCLUSIONS: Our results confirm the major role of expanded repeats in C9ORF72 as causative for ALS and provide evidence for specific phenotypic aspects compared to patients with other ALS-related genes.


Asunto(s)
Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/genética , Expansión de las Repeticiones de ADN , Mutación , Fenotipo , Proteínas/genética , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Proteína C9orf72 , Proteínas de Unión al ADN/genética , Femenino , Estudios de Asociación Genética , Humanos , Masculino , Persona de Mediana Edad , Proteína FUS de Unión a ARN/genética , Superóxido Dismutasa/genética , Superóxido Dismutasa-1 , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA