Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 27(21)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36364329

RESUMEN

Several microorganisms have been reported as capable of acting on poly(ethylene terephthalate) (PET) to some extent, such as Yarrowia lipolytica, which is a yeast known to produce various hydrolases of industrial interest. The present work aims to evaluate PET depolymerization by Y. lipolytica using two different strategies. In the first one, biocatalysts were produced during solid-state fermentation (SSF-YL), extracted and subsequently used for the hydrolysis of PET and bis(2-hydroxyethyl terephthalate) (BHET), a key intermediate in PET hydrolysis. Biocatalysts were able to act on BHET, yielding terephthalic acid (TPA) (131.31 µmol L-1), and on PET, leading to a TPA concentration of 42.80 µmol L-1 after 168 h. In the second strategy, PET depolymerization was evaluated during submerged cultivations of Y. lipolytica using four different culture media, and the use of YT medium ((w/v) yeast extract 1%, tryptone 2%) yielded the highest TPA concentration after 96 h (65.40 µmol L-1). A final TPA concentration of 94.3 µmol L-1 was obtained on a scale-up in benchtop bioreactors using YT medium. The conversion obtained in bioreactors was 121% higher than in systems with SSF-YL. The results of the present work suggest a relevant role of Y. lipolytica cells in the depolymerization process.


Asunto(s)
Yarrowia , Hidrólisis , Tereftalatos Polietilenos , Extractos Celulares , Fermentación , Etilenos
2.
Bioprocess Biosyst Eng ; 44(11): 2277-2287, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34165618

RESUMEN

Since plastic pollution emerged as an urgent environmental problem, different biocatalysts have been tested for poly(ethylene terephthalate) (PET) hydrolysis. This work evaluated three different possible inducers for lipases and/or esterases, two natural sources of biopolymers (apple peels and commercial cork) and PET, as supplements in the solid-state fermentation of soybean bran by Yarrowia lipolytica. The obtained enzymatic extracts displaying different levels of lipase and esterase activities were then tested for PET depolymerization. Supplementation with 5 or 20 wt% of commercial cork led to an increase of 16% in lipase activity and to an increase of 131% in esterase activity, respectively. PET supplementation also led to an increase in the esterase activity of the enzymatic extracts (up to 69%). Enzymes produced in the screening step were able to act as biocatalysts in PET hydrolysis. Enzymatic extracts obtained in fermentation samples supplemented with 20 wt% PET and 20 wt% apple peels led to the highest terephthalic acid concentration (21.2 µmol L-1) in 7 days, whereas enzymes produced in commercial cork media were more efficient for bis(2-hydroxyethyl) terephthalate (BHET) hydrolysis, one of the key-PET hydrolysis intermediates. Results suggest a good potential of the biocatalysts produced by Y. lipolytica IMUFRJ 50,682 in a low-cost media for subsequent utilization in PET depolymerization reactions. This is one of the few reports on the use of a yeast for this application.


Asunto(s)
Lípidos/química , Lípidos de la Membrana/metabolismo , Tereftalatos Polietilenos/metabolismo , Yarrowia/metabolismo , Biocatálisis , Medios de Cultivo , Electroforesis en Gel de Poliacrilamida , Fermentación , Concentración de Iones de Hidrógeno , Hidrólisis , Polimerizacion
3.
World J Microbiol Biotechnol ; 37(7): 116, 2021 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-34125298

RESUMEN

Accumulation of plastic wastes and their effects on the ecosystem have triggered an alarm regarding environmental damage, which explains the massive investigations over the past few years, aiming technological alternatives for their proper destination and valorization. In this context, biological degradation emerges as a green route for plastic processing and recycling in a circular economy approach. Some of the main polymers produced worldwide are poly(ethylene terephthalate) (PET), polyethylene (PE) and polypropylene (PP), which are among the most recalcitrant materials in the environment. In comparison to other polymers, PET biodegradation has advanced dramatically in recent years concerning microbial and enzymatic mechanisms, being positioned in a higher technology readiness level (TRL). Even more challenging, polyolefins (PE and PP) biodegradation is hindered by their high recalcitrance, which is mainly related to stable carbon-carbon bonds. Potential microbial biocatalysts for this process have been evaluated, but the related mechanisms are still not fully elucidated. This review aims to discuss the latest developments on key microbial biocatalysts for degradation of these polymers, addressing biodegradation monitoring, intellectual property, and TRL analysis of the bioprocessing strategies using biodegradation performance, process time and scale as parameters for the evaluation.


Asunto(s)
Plásticos/química , Reciclaje/métodos , Biocatálisis , Biodegradación Ambiental , Ecosistema , Polienos/química , Tereftalatos Polietilenos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA