Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Exp Cell Res ; 435(2): 113934, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38237847

RESUMEN

Myocardial infarction (MI) is one of the major cardiovascular diseases caused by diminished supply of nutrients and oxygen to the heart due to obstruction of the coronary artery. Different treatment options are available for cardiac diseases, however, they do not completely repair the damage. Therefore, reprogramming terminally differentiated fibroblasts using transcription factors is a promising strategy to differentiate them into cardiac like cells in vitro and to increase functional cardiomyocytes and reduce fibrotic scar in vivo. In this study, skin fibroblasts were selected for reprogramming because they serve as a convenient source for the autologous cell therapy. Fibroblasts were isolated from skin of rat pups, propagated, and directly reprogrammed towards cardiac lineage. For reprogramming, two different approaches were adopted, i.e., cells were transfected with: (1) combination of cardiac transcription factors; GATA4, MEF2c, Nkx2.5 (GMN), and (2) combination of cardiac transcription factors; GATA4, MEF2c, Nkx2.5, and iPSC factors; Oct4, Klf4, Sox2 and cMyc (GMNO). After 72 h of transfection, cells were analyzed for the expression of cardiac markers at the mRNA and protein levels. For in vivo study, rat MI models were developed by ligating the left anterior descending coronary artery and the reprogrammed cells were transplanted in the infarcted heart. qPCR results showed that the reprogrammed cells exhibited significant upregulation of cardiac genes. Immunocytochemistry analysis further confirmed cardiomyogenic differentiation of the reprogrammed cells. For the assessment of cardiac function, animals were analyzed via echocardiography after 2 and 4 weeks of cell transplantation. Echocardiographic results showed that the hearts transplanted with the reprogrammed cells improved ejection fraction, fractional shortening, left ventricular internal systolic and diastolic dimensions, and end systolic and diastolic volumes. After 4 weeks of cell transplantation, heart tissues were harvested and processed for histology. The histological analysis showed that the reprogrammed cells improved wall thickness of left ventricle and reduced fibrosis significantly as compared to the control. It is concluded from the study that novel combination of cardiac transcription factors directly reprogrammed skin fibroblasts and differentiated them into cardiomyocytes. These differentiated cells showed cardiomyogenic characters in vitro, and reduced fibrosis and improved cardiac function in vivo. Furthermore, direct reprogramming of fibroblasts transfected with cardiac transcription factors showed better regeneration of the injured myocardium and improved cardiac function as compared to the indirect approach in which combination of cardiac and iPSC factors were used. The study after further optimization could be used as a better strategy for cell-based therapeutic approaches for cardiovascular diseases.


Asunto(s)
Infarto del Miocardio , Miocitos Cardíacos , Ratas , Animales , Miocitos Cardíacos/metabolismo , Diferenciación Celular , Infarto del Miocardio/patología , Factores de Transcripción/metabolismo , Fibroblastos/metabolismo , Fibrosis , Reprogramación Celular
2.
Cell Biol Int ; 48(5): 594-609, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38321826

RESUMEN

The regeneration of osteochondral lesions by tissue engineering techniques is challenging due to the lack of physicochemical characteristics and dual-lineage (osteogenesis and chondrogenesis). A scaffold with better mechanical properties and dual lineage capability is required for the regeneration of osteochondral defects. In this study, a hydrogel prepared from decellularized human umbilical cord tissue was developed and evaluated for osteochondral regeneration. Mesenchymal stem cells (MSCs) isolated from the umbilical cord were seeded with hydrogel for 28 days, and cell-hydrogel composites were cultured in basal and osteogenic media. Alizarin red staining, quantitative polymerase chain reaction, and immunofluorescent staining were used to confirm that the hydrogel was biocompatible and capable of inducing osteogenic differentiation in umbilical cord-derived MSCs. The findings demonstrate that human MSCs differentiated into an osteogenic lineage following 28 days of cultivation in basal and osteoinductive media. The expression was higher in the cell-hydrogel composites cultured in osteoinductive media, as evidenced by increased levels of messenger RNA and protein expression of osteogenic markers as compared to basal media cultured cell-hydrogel composites. Additionally, calcium deposits were also observed, which provide additional evidence of osteogenic differentiation. The findings demonstrate that the hydrogel is biocompatible with MSCs and possesses osteoinductive capability in vitro. It may be potentially useful for osteochondral regeneration.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Humanos , Osteogénesis/genética , Diferenciación Celular , Células Madre Mesenquimatosas/metabolismo , Células Cultivadas , Ingeniería de Tejidos/métodos , Hidrogeles/química , Andamios del Tejido
3.
Cell Biochem Funct ; 42(5): e4090, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38973147

RESUMEN

Cellular therapy is considered a better option for the treatment of degenerative disorders. Different cell types are being used for tissue regeneration. Despite extensive research in this field, several issues remain to be addressed concerning cell transplantation. One of these issues is the survival and homing of administered cells in the injured tissue, which depends on the ability of these cells to adhere. To enhance cell adherence and survival, Rap1 GTPase was activated in mesenchymal stem cells (MSCs) as well as in cardiomyocytes (CMs) by using 8-pCPT-2'-O-Me-cAMP, and the effect on gene expression dynamics was determined through quantitative reverse transcriptase-polymerase chain reaction analysis. Pharmacological activation of MSCs and CMs resulted in the upregulation of connexin-43 and cell adhesion genes, which increased the cell adhesion ability of MSCs and CMs, and increased the fusion of MSCs with neonatal CMs. Treating stem cells with a pharmacological agent that activates Rap1a before transplantation can enhance their fusion with CMs and increase cellular regeneration.


Asunto(s)
Células Madre Mesenquimatosas , Miocitos Cardíacos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Animales , Adhesión Celular/efectos de los fármacos , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/genética , Fusión Celular , Células Cultivadas , Ratas , Animales Recién Nacidos , Proteínas de Unión al GTP rap1/metabolismo , Proteínas de Unión al GTP rap1/genética
4.
Cell Biochem Funct ; 42(2): e3946, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38379227

RESUMEN

The underlying pathophysiology of nonhealing chronic wounds is poorly understood due to the changes occurring at the gene level and the complexity arising in their proteomic profile. Here, we elucidated the temporal and differential profile of the normal and diabetic wound-healing mediators along with their interactions and associated pathways. Skin tissues corresponding to normal and diabetic wounds were isolated at Days 0, 3, 6, and 9 representing different healing phases. Temporal gene expression was analyzed by quantitative real-time PCR. Concurrently, differential protein patterns in the wound tissues were identified by Nano LC-ESI-TOF mass spectrometry and later confirmed by Western blot analysis. Gene ontology annotation, protein-protein interaction, and protein pathway analysis were performed using DAVID, PANTHER, and STRING bioinformatics resources. Uniquely identified proteins (complement C3, amyloid beta precursor protein, and cytoplasmic linker associated protein 2) in the diabetic wound tissue implied that these proteins are involved in the pathogenesis of diabetic wound. They exhibit enhanced catalytic activity, trigger pathways linked with inflammation, and negatively regulate wound healing. However, in the normal wound tissue, axin 1, chondroitin sulfate proteoglycan 4, and sphingosine-1-phosphate receptor were identified, which are involved in proliferation, angiogenesis, and remodeling. Our findings demonstrate the correlation between elevated gene expression of tumor necrosis factor-α, interleukin (IL)-1ß, and identified mediators: aryl hydrocarbon receptor nuclear translocator, 5'-aminolevulinate synthase 2, and CXC-family, that inflicted an inflammatory response by activating downstream MAPK, JAK-STAT, and NF-κB pathways. Similarly, in normal wound tissue, the upregulated IL-4 and hepatocyte growth factor levels in conjunction with the identified proteins, serine/threonine-protein kinase mTOR and peroxisome proliferator-activated receptor gamma, played a significant role in the cellular response to platelet-derived growth factor stimulus, dermal epithelialization, and cell proliferation, processes associated with the repair mechanism. Furthermore, Western blot analysis indicated elevated levels of inflammatory markers and reduced levels of proliferative and angiogenic factors in the diabetic wound.


Asunto(s)
Diabetes Mellitus , Cicatrización de Heridas , Humanos , Péptidos beta-Amiloides/metabolismo , Proteómica , Piel/patología , Diabetes Mellitus/metabolismo
5.
Cell Biochem Funct ; 42(3): e4008, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38613198

RESUMEN

Temporal phases of wound healing and their corresponding healing factors are essential in wound regeneration. Mesenchymal stem cells (MSCs) accelerate wound healing via their paracrine secretions by enhancing cell migration, angiogenesis, and reducing inflammation. This study evaluated the local therapeutic effect of human umbilical cord MSCs (hUCMSCs) in the healing of cold-induced burn wounds. An in vitro wound (scratch) was developed in rat skin fibroblasts. The culture was maintained in the conditioned medium (CM) which was prepared by inducing an artificial wound in hUCMSCs in a separate experiment. Treated fibroblasts were analyzed for the gene expression profile of healing mediators involved in wound closure. Findings revealed enhanced cell migration and increased levels of healing mediators in the treated fibroblasts relative to the untreated group. Cold-induced burn wounds were developed in Wistar rats, followed by a single injection of hUCMSCs. Wound healing pattern was examined based on the healing phases: hemostasis/inflammation (Days 1, 3), cell proliferation (Day 7), and remodeling (Day 14). Findings exhibited enhanced wound closure in the treated wound. Gene expression, histological, and immunohistochemical analyses further confirmed enhanced wound regeneration after hUCMSC transplantation. Temporal gene expression profile revealed that the level of corresponding cytokines was substantially increased in the treated wound as compared with the control, indicating improvement in the processes of angiogenesis and remodeling, and a substantial reduction in inflammation. Histology revealed significant collagen formation along with regenerated skin layers and appendages, whereas immunohistochemistry exhibited increased neovascularization during remodeling. Leukocyte infiltration was also suppressed in the treated group. Overall findings demonstrate that a single dose of hUCMSCs enhances wound healing in vivo, and their secreted growth factors accelerate cell migration in vitro.


Asunto(s)
Quemaduras , Células Madre , Animales , Femenino , Humanos , Ratas , Quemaduras/terapia , Inflamación , Ratas Wistar , Cicatrización de Heridas
6.
BMC Oral Health ; 24(1): 780, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992585

RESUMEN

BACKGROUND: This study delves into the intricate landscape of oral cancer, a global concern with a high incidence in Asian countries. We focus on oral squamous cell carcinoma (OSCC), primarily driven by the consumption of betel nut and its derivatives. OSCC often arises from premalignant lesions like oral submucous fibrosis (OSF). In Pakistan, OSCC is prevalent among men due to various addictive substances, including smokeless tobacco and chewing materials. Mutations in tumor suppressor genes, such as TP53 and p21, play crucial roles in this malignancy's development. We also explore the involvement of TUSC3 gene deletion in OSCC and OSF. METHODS: In this study we investigated demographics, TUSC3 gene expression, deletion analysis, and TP53 and p21 genetic alterations in OSCC and OSF patients (blood and tissue of 50 samples in each condition) who had tobacco derivates usage history. The association analysis was carried out mainly through PCR based genotyping. RESULTS: The study's patient cohort (OSCC and OSF) displayed a wide age range from 13 to 65 years (Mean = 32.96 years). Both conditions were more prevalent in males, with a male-female ratio of approximately 2.5:1. Chewing habits analysis revealed high frequencies of gutka use in both OSF and OSCC patients. TUSC3 expression analysis in OSCC cell lines indicated significant downregulation. Genotyping showed no TUSC3 deletion in OSF cases, but a deletion rate of over 22% in OSCC tissue samples. Analysis supported a significant association of TUSC3 deletion with OSCC development but not with OSF. Polymorphism in p53 exon 4 and p21 (rs1801270) were significantly associated with both OSCC and OSF, adding to their pathogenesis. Our findings further revealed a strong correlation between TUSC3 deletion and the excessive use of tobacco and related products, shedding light on the genetic underpinnings of OSCC development. CONCLUSIONS: Notably, our study provides a crucial insight into genetic aspects underlying OSCC and OSF in response of addictive consumption of areca nut, betel quid, and tobacco derivatives. A significant association between TUSC3 deletion and OSCC development, along with polymorphisms in TP53 and p21, underscores the importance of further research into the molecular mechanisms driving oral cancer progression for improved diagnosis and treatment outcomes.


Asunto(s)
Carcinoma de Células Escamosas , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Proteínas de la Membrana , Neoplasias de la Boca , Fibrosis de la Submucosa Bucal , Tabaco sin Humo , Proteína p53 Supresora de Tumor , Humanos , Masculino , Fibrosis de la Submucosa Bucal/genética , Neoplasias de la Boca/genética , Neoplasias de la Boca/patología , Femenino , Adulto , Persona de Mediana Edad , Carcinoma de Células Escamosas/genética , Pakistán , Anciano , Tabaco sin Humo/efectos adversos , Adulto Joven , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Adolescente , Proteínas de la Membrana/genética , Proteína p53 Supresora de Tumor/genética , Proteínas Supresoras de Tumor/genética , Areca/efectos adversos , Eliminación de Gen , Factores Sexuales
7.
Curr Issues Mol Biol ; 45(5): 4100-4123, 2023 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-37232730

RESUMEN

BACKGROUND: Demyelinating diseases represent a broad spectrum of disorders and are characterized by the loss of specialized glial cells (oligodendrocytes), which eventually leads to neuronal degeneration. Stem cell-based regenerative approaches provide therapeutic options to regenerate demyelination-induced neurodegeneration. OBJECTIVES: The current study aims to explore the role of oligodendrocyte-specific transcription factors (OLIG2 and MYT1L) under suitable media composition to facilitate human umbilical-cord-derived mesenchymal stem cells (hUC-MSCs) differentiation toward oligodendrocyte for their potential use to treat demyelinating disorders. METHODOLOGY: hUC-MSCs were isolated, cultured, and characterized based on their morphological and phenotypic characteristics. hUC-MSCs were transfected with OLIG2 and MYT1L transcription factors individually and in synergistic (OLIG2 + MYT1L) groups using a lipofectamine-based transfection method and incubated under two different media compositions (normal and oligo induction media). Transfected hUC-MSCs were assessed for lineage specification and differentiation using qPCR. Differentiation was also analyzed via immunocytochemistry by determining the expression of oligodendrocyte-specific proteins. RESULTS: All the transfected groups showed significant upregulation of GFAP and OLIG2 with downregulation of NES, demonstrating the MSC commitment toward the glial lineage. Transfected groups also presented significant overexpression of oligodendrocyte-specific markers (SOX10, NKX2.2, GALC, CNP, CSPG4, MBP, and PLP1). Immunocytochemical analysis showed intense expression of OLIG2, MYT1L, and NG2 proteins in both normal and oligo induction media after 3 and 7 days. CONCLUSIONS: The study concludes that OLIG2 and MYT1L have the potential to differentiate hUC-MSCs into oligodendrocyte-like cells, which is greatly facilitated by the oligo induction medium. The study may serve as a promising cell-based therapeutic strategy against demyelination-induced neuronal degeneration.

8.
Mol Cell Biochem ; 478(8): 1759-1770, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36566485

RESUMEN

Myocardial infarction (MI) damages cardiomyocytes permanently and compromises cardiac function. Mesenchymal stem cells (MSCs) with the potential to differentiate into multiple lineages are considered as one of the best options for the treatment of MI. However, aging affects their regeneration capability. With age, reactive oxygen species (ROS) accumulate in cells ultimately causing cell death. To successfully utilize these stem cells in clinic, novel strategies to improve their functional capability should be explored. In this study, we aimed to enhance the cardiac regeneration potential of bone marrow MSCs derived from aging rats by treating them with antioxidants, rutin or quercetagetin in separate in vivo experiments. Oxidative stress was induced by treating MSCs of young and aging rats with different concentrations of H2O2 which resulted in an increase in the ROS level. MSCs were treated with rutin or quercetagetin at varying concentrations and exposed to H2O2. It was observed that both antioxidants significantly (P < 0.001) suppressed H2O2-induced intracellular ROS accumulation in a dose-dependent manner. An optimized concentration of 10 µM rutin or quercetagetin was used for the in vivo experiments. MI models were developed in aging rats by ligation of left anterior descending artery and treated MSCs were transplanted in the MI models. Echocardiography was performed after 2 and 4 weeks of cell transplantation to evaluate the functional status of the infarcted heart and histological analysis was performed after 4 weeks to assess cardiac regeneration. Significant improvement was observed in cardiac parameters including LVEF% (P < 0.001), LVFS% (P < 0.01 and P < 0.001), LVIDd (P < 0.01 and P < 0.001), LVIDs (P < 0.001), LVEDV (P < 0.001) and LVESV (P < 0.001) in the treated young as well as aging MSCs. It is concluded from these findings that rutin and quercetagetin treatment enhance the regeneration efficiency of young and aging MSCs in vivo. These antioxidants can be effectively utilized to improve cellular therapy for myocardial infarction by suppressing ROS production.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Infarto del Miocardio , Ratas , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Médula Ósea/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno/farmacología , Miocardio/metabolismo , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Células Madre Mesenquimatosas/metabolismo , Envejecimiento , Trasplante de Células Madre Mesenquimatosas/métodos
9.
Mol Biol Rep ; 50(5): 4119-4131, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36877347

RESUMEN

BACKGROUND: With advancing age of stem cells, dysregulation of various processes at the cellular level occurs, thereby decreasing their regeneration potential. One of the changes that occurs during the aging process is the accumulation of reactive oxygen species (ROS), which accelerates the processes of cellular senescence and cell death. The aim of this study is to evaluate two antioxidant compounds; Chromotrope 2B and Sulfasalazine, for their antioxidant effects on young and old rat bone marrow mesenchymal stem cells (MSCs). METHODS AND RESULTS: Oxidative stress was induced in MSCs by 5 µM dexamethasone for 96 h and the cells were treated with Chromotrope 2B or Sulfasalazine, 50 µM each. The effects of antioxidant treatment following oxidative stress induction was evaluated by transcriptional profiling of genes involved in the oxidative stress and telomere maintenance. Expression levels of Cat, Gpx7, Sod1, Dhcr24, Idh1, and Txnrd2 were found to be increased in young MSCs (yMSCs) as a result of oxidative stress, while Duox2, Parp1, and Tert1 expression were found to be decreased as compared to the control. In old MSCs (oMSCs), the expressions of Dhcr24, Txnrd2, and Parp1 increased, while that of Duox2, Gpx7, Idh1, and Sod1 decreased following oxidative stress. In both MSC groups, Chromotrope 2B prompted decrease in the ROS generation before and after the induction of oxidative stress. In oMSCs, ROS content was significantly reduced in the Sulfasalazine treated group. CONCLUSION: Our findings suggest that both Chromotrope 2B and Sulfasalazine possess the potential to reduce the ROS content in both age groups, though the latter was found to be more potent. These compounds can be used to precondition MSCs to enhance their regenerative potential for future cell-based therapeutics.


Asunto(s)
Antioxidantes , Células Madre Mesenquimatosas , Ratones , Ratas , Animales , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sulfasalazina/farmacología , Sulfasalazina/metabolismo , Superóxido Dismutasa-1/metabolismo , Médula Ósea/metabolismo , Oxidasas Duales , Estrés Oxidativo , Células Madre Mesenquimatosas/metabolismo , Tiorredoxina Reductasa 2/metabolismo
10.
Mol Biol Rep ; 50(9): 7371-7380, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37450078

RESUMEN

BACKGROUND: Cardiovascular diseases remain a major cause of death globally. Cardiac cells once damaged, cannot resume the normal functioning of the heart. Bone marrow derived mesenchymal stem cells (BM-MSCs) have shown the potential to differentiate into cardiac cells. Epigenetic modifications determine cell identity during embryo development via regulation of tissue specific gene expression. The major epigenetic mechanisms that control cell fate and biological functions are DNA methylation and histone modifications. However, epigenetic modifiers alone are not sufficient to generate mature cardiac cells. Various small molecules such as ascorbic acid (AA) and salvianolic acid B (SA) are known for their cardiomyogenic potential. Therefore, this study is aimed to examine the synergistic effects of epigenetic modifiers, valproic acid (VPA) and 5-azacytidine (5-aza) with cardiomyogenic molecules, AA and SA in the cardiac differentiation of MSCs. METHODS AND RESULTS: BM-MSCs were isolated, propagated, characterized, and then treated with an optimized dose of VPA or 5-aza for 24 h. MSCs were maintained in a medium containing AA and SA for 21 days. All groups were assessed for the expression of cardiac genes and proteins through q-PCR and immunocytochemistry, respectively. Results show that epigenetic modifiers VPA or 5-aza in combination with AA and SA significantly upregulate the expression of cardiac genes MEF2C, Nkx2.5, cMHC, Tbx20, and GATA-4. In addition, VPA or 5-aza pretreatment along with AA and SA enhanced the expression of the cardiac proteins connexin-43, GATA-4, cTnI, and Nkx2.5. CONCLUSION: These findings suggest that epigenetic modifiers valproic acid and 5-azacytidine in combination with ascorbic acid and salvianolic acid B promote cardiac differentiation of MSCs. This pretreatment strategy can be exploited for designing future stem cell based therapeutic strategies for cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares , Células Madre Mesenquimatosas , Humanos , Ácido Valproico/farmacología , Ácido Valproico/metabolismo , Ácido Ascórbico/farmacología , Ácido Ascórbico/metabolismo , Enfermedades Cardiovasculares/metabolismo , Diferenciación Celular , Células Madre Mesenquimatosas/metabolismo , Azacitidina/farmacología , Azacitidina/metabolismo , Miocitos Cardíacos/metabolismo , Células Cultivadas
11.
Cell Biochem Funct ; 41(2): 223-233, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36651266

RESUMEN

Central nervous system anomalies give rise to neuropathological consequences with immense damage to the neuronal tissues. Cell based therapeutics have the potential to manage several neuropathologies whereby the differentiated cells are explored for neuronal regeneration. The current study analyzes the effect of a bioactive compound, alpha terpineol (AT) on the differentiation of rat bone marrow derived mesenchymal stem cells (BM-MSCs) toward neuronal lineage, and explores regulation of differentiation process through the study of Wnt pathway mediators. BM-MSCs were cultured and characterized based on their surface markers and tri-lineage differentiation. Safe dose of AT as optimized by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium bromide assay, was used for the treatment of MSCs. Treated cells were analyzed for the neuronal, astroglial and germ layer transition markers at the gene and protein levels, by quantitative polymerase chain reaction and immunocytochemistry, respectively. Temporal expression of Wnt pathway genes was assessed during the course of neuronal differentiation. AT treated group showed significant upregulation of neuron specific (NSE, MAP2, Tau, Nestin, and NefL) and astroglial (GFAP) genes with positive expression of late neuronal markers. Germ layer transition analysis showed the overexpression of ectodermal markers (NCAM, Nestin, and Pax6), whereas endodermal (AFP, MixL1, and Sox17), and mesodermal (Mesp1 and T Brachyury) markers were also found to be upregulated. Wnt signaling pathway was activated during the initial phase (30 min) of differentiation, which later was downregulated at 1, 3, and 5 h. AT efficiently induces neuronal differentiation of BM-MSCs by regulating Wnt signaling. Overexpression of both early and late neuronal markers indicate their neuro-progenitor state and thus can be utilized as a promising approach in cellular therapeutics to treat various neurodegenerative ailments. In addition, exploration of the molecular pathways may be helpful to understand the mechanism of cell-based neuronal regeneration.


Asunto(s)
Células Madre Mesenquimatosas , Vía de Señalización Wnt , Ratas , Animales , Nestina/metabolismo , Nestina/farmacología , Neuronas/metabolismo , Diferenciación Celular , Células Madre Mesenquimatosas/metabolismo , Células de la Médula Ósea , Células Cultivadas
12.
Cell Biochem Funct ; 41(7): 833-844, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37814478

RESUMEN

Diabetes is one of the major health issues globally. Type 1 diabetes mellitus develops due to the destruction of pancreatic ß cells. Mesenchymal stem cells (MSCs) having remarkable self-renewal and differentiation potential, can regenerate ß cells. MSCs preconditioned with bioactive small molecules possess enhanced biological features and therapeutic potential under in vivo environment. Interestingly, compounds of naphthoquinone class possess antidiabetic and anti-inflammatory properties, and can be explored as potential candidates for preconditioning MSCs. This study analyzed the effect of lawsone-preconditioned human umbilical cord MSCs (hUMSCs) on the regeneration of ß cells in the streptozotocin (STZ)-induced Type 1 diabetes (T1D) rats. hUMSCs were isolated and characterized for the presence of surface markers. MSCs were preconditioned with optimized concentration of lawsone. T1D rat model was established by injecting 50 mg/kg of STZ intraperitoneally. Untreated and lawsone-preconditioned hUMSCs were transplanted into the diabetic rats via tail vein. Fasting blood sugar and body weight were monitored regularly for 4 weeks. Pancreas was harvested and ß cell regeneration was evaluated by hematoxylin and eosin staining, and gene expression analysis. Immunohistochemistry was also done to assess the insulin expression. Lawsone-preconditioned hUMSCs showed better anti-hyperglycemic effect in comparison with untreated hUMSCs. Histological analysis presented the regeneration of islets of Langerhans with upregulated expression of ßcell genes and reduced expression of inflammatory markers. Immunohistochemistry revealed strong insulin expression in the preconditioned hUMSCs compared with the untreated hUMSCs. It is concluded from the present study that lawsone-preconditioned hMSCs were able to exhibit pronounced anti-hyperglycemic effect in vivo compared with hUMSCs alone.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Naftoquinonas , Ratas , Humanos , Animales , Diabetes Mellitus Tipo 1/terapia , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patología , Células Secretoras de Insulina/metabolismo , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Experimental/metabolismo , Naftoquinonas/farmacología , Naftoquinonas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Insulina/metabolismo , Hipoglucemiantes/farmacología
13.
Altern Lab Anim ; 51(1): 12-29, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36484201

RESUMEN

Stem cell-based therapy presents an attractive alternative to conventional therapies for degenerative diseases. Numerous studies have investigated the capability of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) to contribute to the regeneration of cardiomyocytes, and the results have encouraged further basic and clinical studies on the MSC-based treatment of cardiomyopathies. This study aimed to determine the potential of cardiomyogenic transcription factors in differentiating hUC-MSCs into cardiac-like cells in vitro. MSCs were isolated from umbilical cord tissue and were transduced with the transcription factor genes, GATA-4 and Nkx 2.5, via infection with lentiviruses, to promote differentiation into the cardiomyogenic lineage. Gene and protein expression were analysed with qPCR and immunocytochemical staining. After transduction, differentiated cardiac-like cells showed significant expression of cardiac genes and proteins, namely GATA-4, Nkx-2.5, cardiac troponin I (cTnI) and myosin heavy chain (MHC). The cardiomyogenic-induced group significantly overexpressed cardiac-specific genes (GATA-4, Nkx-2.5, cTnI, MHC, α-actinin and Wnt2). Expression of the calcium channel gene was also significantly increased, while the sodium channel gene was downregulated in the transduced hUC-MSCs, as compared to non-transduced cells. The results suggest that GATA-4 and Nkx-2.5 interact synergistically in the activation of downstream cardiac transcription factors, demonstrating the functional convergence of hUC-MSC differentiation into cardiac-like cells. These findings could potentially be utilised in the efficient production of cardiac-like cells from stem cells; these cardiac-like cells could then be used in various applications, such as for in vivo implantation in infarcted myocardium, and for drug screening in toxicity testing.


Asunto(s)
Células Madre Mesenquimatosas , Miocardio , Humanos , Diferenciación Celular/fisiología , Miocardio/metabolismo , Factores de Transcripción/metabolismo , Troponina I/metabolismo , Células Madre Mesenquimatosas/metabolismo , Cordón Umbilical/metabolismo
14.
J Pak Med Assoc ; 73(Suppl 1)(2): S3-S8, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36788384

RESUMEN

Objectives: To determine the effect of the pre-treatment of mesenchymal stem cells (MSCs) with minocycline on the expression of antioxidant genes and cardiac repair post myocardial infarction (MI) in rats. METHODS: Rat bone marrow derived MSCs were used in the study. Cytotoxicity of minocycline in MSCs was determined using JC1 assay to identify a safe drug dose for further experiments. The MSCs were pre-treated with 1.0 µM minocycline for 24 hours and then treated with hydrogen peroxide (H2O2), after that mRNA was isolated and the expression levels of antioxidant genes including peroxiredoxin, glutathione peroxidase, and superoxide dismutase were determined. Finally, minocycline pre-treated MSCs were used to treat rats induced with MI by the ligation of left anterior descending coronary artery. The cardiac function was evaluated at two and four weeks post MI using echocardiography. RESULTS: At 1.0 µM concentration, minocycline was found to be safe for MSCs and used for subsequent experiments. Minocycline pre-treatment was found to up regulate several antioxidant genes in oxidatively stressed MSCs. Furthermore, minocycline pre-treated MSCs displayed greater improvement in cardiac left ventricular function at two and four-weeks post MI as compared to untreated rats. CONCLUSIONS: Pre-treatment of MSCs with minocycline enhances the expression of antioxidant genes and promotes their capability to repair cardiac function after MI.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Infarto del Miocardio , Ratas , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Minociclina/farmacología , Minociclina/metabolismo , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Células Madre Mesenquimatosas/metabolismo , Modelos Animales de Enfermedad
15.
Mol Cell Biochem ; 477(12): 2735-2749, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35610401

RESUMEN

The therapeutic use of bone marrow mesenchymal stem cells (BM-MSCs) requires a large number of cells (1-100 × 106 cells/kg of body weight). Extensive in vitro growth is limited due to the aging of cultured BM-MSCs which leads to abnormal morphology and senescence. Hypoxia increases BM-MSC proliferation, but the question of whether hypoxia preconditioning is safe for clinical application of BM-MSCs remains to be answered. Zinc is essential for cell proliferation and differentiation, especially for the regulation of DNA synthesis and mitosis. It is a structural constituent of numerous proteins on a molecular level, including transcription factors and enzymes of cellular signaling machinery. All the tissues, fluids, and organs of the human body contain zinc. More than 95% of zinc is intracellular, of which 44% is involved in the transcription of DNA. We investigated the effects of ZnCl2 on proliferation, morphology, migration, population doubling time (PDT), and gene expression of BM-MSCs under hypoxic (1% O2) and normoxic (21% O2) environments. BM-MSCs were preconditioned with optimized concentrations of ZnCl2 under normoxic and hypoxic environments and further examined for morphology by the phase-contrast inverted microscope, cell proliferation by MTT assay, PDT, cell migration ability, and gene expression analysis. Zinc significantly enhanced the proliferation of BM-MSCs, and it decreases PDT under hypoxic and normoxic environments as compared to control cells. Migration of BM-MSCs toward the site of injury increased and expression of HIF1-α significantly decreased under hypoxic conditions as compared to non-treated hypoxic cells and control. At late passages (P9), the morphology of normoxic BM-MSCs was transformed into large, wide, and flat cells, and they became polygonal and lost their communication with other cells. Conversely, zinc-preconditioned BM-MSCs retained their spindle-shaped, fibroblast-like morphology at P9. The expression of proliferative genes was found significantly upregulated, while downregulation of genes OCT4 and CCNA2 was observed in zinc-treated BM-MSCs under both normoxic and hypoxic conditions. ZnCl2 treatment can be used for extensive expansion of BM-MSCs in aged populations to obtain a large number of cells required for systemic administration to produce therapeutic efficacy.


Asunto(s)
Células de la Médula Ósea , Células Madre Mesenquimatosas , Humanos , Anciano , Células de la Médula Ósea/metabolismo , Zinc/farmacología , Zinc/metabolismo , Médula Ósea , Hipoxia de la Célula , Células Cultivadas , Células Madre Mesenquimatosas/metabolismo , Proliferación Celular , Hipoxia/metabolismo
16.
Pak J Med Sci ; 38(5): 1228-1237, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35799722

RESUMEN

Background and Objectives: Owing to high proliferation rate, multipotency and self-renewal capability, dental pulp stem cells (DPSC) and stem cells from human exfoliated teeth (SHED) have become stem cell source of choice for cell based regenerative therapies. We aimed to compare DPSC and SHED as stem cell sources with a future use in regeneration of calcified tissue. Methods: Explant derived human DPSC (n=9) and SHED (n=1) were cryopreserved, thawed and expanded for analysis of population doubling time, colony forming unit assay and efficiency. A growth curve was plotted to determine population doubling time, while colony forming numbers and efficiency was determined at plating cell densities of 5.6, 11.1 and 22.2 / cm2. The isolated cells were characterized for the presence of stem cell markers by immunophenotyping and immunofluorescence staining, and tri-lineage differentiation. Statistical analysis was performed by Pearson correlation, Exponential regression and two way Anova with Tukey test at p<0.05. Results: DPSC and SHED exhibited spindle shaped fibroblast like morphology. SHED was found superior than DPSC in terms of proliferation and colony forming efficiency. Immunophenotypes showed that DPSC contain 62.6±26.3 %, 90.9±14.8% and 19.8±0.1%, while SHED contain 90.5%, 97.7% and 0.1% positive cells for CD90, CD73 and CD105. DPSC were strongly positive for vimentin, CD29, CD73, while reactivity was moderate to weak against CD44 and CD90. SHED expressed vimentin, CD29, CD105, CD90 and CD44. Both were negative for CD45. Upon induction, both cell types differentiated into bone, fat and cartilage like cells. Conclusion: Cultured DPSC and SHED were proliferative and exhibited self-renewal property. Both DPSC and SHED expressed stem cell markers and were able to differentiate into bone, fat and cartilage like cells. Thus, these could be a suitable stem cell sources for cell based regenerative therapies.

17.
Mol Cell Biochem ; 476(8): 3191-3205, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33864569

RESUMEN

Intervertebral disc (IVD) degeneration is an asymptomatic pathophysiological condition and a strong causative factor of low back pain. There is no cure available except spinal fusion and pain management. Stem cell-based regenerative medicine is being considered as an alternative approach to treat disc diseases. The current study aimed to differentiate human umbilical cord-mesenchymal stem cells (hUC-MSCs) into chondrocyte-like cells and to elucidate their feasibility and efficacy in the degenerated IVD rat model. Chondrogenic induction medium was used to differentiate hUC-MSCs into chondroprogenitors. Rat tail IVD model was established with three consecutive coccygeal discs. qPCR was performed to quantify the molecular markers of pain and inflammation. Histological staining was performed to evaluate the degree of regeneration. Induced chondroprogenitors showed the expression of chondrogenic genes, SOX9, TGF-ß1, ACAN, BMP2, and GDF5. Immunocytochemical staining showed positive expression of chondrogenic proteins SOX9, TGF-ß1, TGF-ß2, and Collagen 2. In in vivo study, transplanted chondroprogenitors showed better survival, homing, and distribution in IVD as compared to normal MSCs. Expression of pain and inflammatory genes at day 5 of cell transplantation modulated immune response significantly. The transplanted labeled MSCs and induced chondroprogenitors differentiated into functional nucleus pulposus (NP) cells as evident from co-localization of red (DiI) and green fluorescence for SOX9, TGF-ß1, and TGF-ß2. Alcian blue and H & E staining showed standard histological features, indicating better preservation of the NP structure and cellularity than degenerated discs. hUC-MSCs-derived chondroprogenitors showed better regeneration potential as compared to normal MSCs. The pain and inflammation genes were downregulated in the treated group as compared to the degenerated IVD.


Asunto(s)
Condrogénesis , Inflamación/prevención & control , Degeneración del Disco Intervertebral/terapia , Disco Intervertebral/citología , Células Madre Mesenquimatosas/citología , Dolor/prevención & control , Regeneración , Animales , Diferenciación Celular , Humanos , Inflamación/etiología , Inflamación/metabolismo , Inflamación/patología , Degeneración del Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/patología , Masculino , Trasplante de Células Madre Mesenquimatosas/métodos , Dolor/etiología , Dolor/metabolismo , Dolor/patología , Ratas , Ratas Wistar , Transducción de Señal , Cordón Umbilical/citología
18.
Mol Cell Biochem ; 476(2): 909-919, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33111212

RESUMEN

Mesenchymal stem cells (MSCs) have multi-lineage differentiation potential which make them an excellent source for cell-based therapies. Histone modification is one of the major epigenetic regulations that play central role in stem cell differentiation. Keeping in view their ability to maintain gene expression essential for successful differentiation, it was interesting to examine the effects of valproic acid (VPA), a histone deacetylase inhibitor, in the hepatic differentiation of MSCs within the 3D scaffold. MSCs were treated with the optimized concentration of VPA in the 3D collagen scaffold. Analyses of hepatic differentiation potential of treated MSCs were performed by qPCR, immunostaining and periodic acid Schiff assay. Our results demonstrate that MSCs differentiate into hepatic-like cells when treated with 5 mM VPA for 24 h. The VPA-treated MSCs have shown significant upregulation in the expression of hepatic genes, CK-18 (P < 0.05), TAT (P < 0.01), and AFP (P < 0.001), and hepatic proteins, AFP (P < 0.05) and ALB (P < 0.01). In addition, acetylation of histones (H3 and H4) was significantly increased (P < 0.001) in VPA-pretreated cells. Further analysis showed that VPA treatment significantly enhanced (P < 0.01) glycogen storage, an important functional aspect of hepatic cells. The present study revealed the effectiveness of VPA in hepatic differentiation within the 3D collagen scaffold. These hepatic-like cells may have an extended clinical applicability in future for successful liver regeneration.


Asunto(s)
Hepatocitos/efectos de los fármacos , Hígado/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Ácido Valproico/farmacología , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Femenino , Expresión Génica/efectos de los fármacos , Hepatocitos/citología , Hepatocitos/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Histonas/metabolismo , Hígado/citología , Hígado/metabolismo , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratas , Ratas Wistar
19.
Mol Cell Biochem ; 470(1-2): 99-113, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32415417

RESUMEN

Small molecules are widely used to induce stem cell differentiation. 2'-deoxycytidine (2-DC) belongs to the cytidine family. It stimulates the expression of cardiac-specific genes and proteins, and directs mesenchymal stem cells towards cardiomyogenic differentiation. We aim to investigate the role of 2-DC-treated human umbilical cord mesenchymal stem cells (UC-MSCs) into myogenic lineage and explore their application in regeneration of infarcted myocardium. UC-MSCs were treated with 5, 10, 20, and 40 µM 2-DC following optimization by cytotoxicity analysis. Rat model of myocardial infarction (MI) was induced by ligating left anterior descending coronary artery. Normal, and 2-DC treated UC-MSCs were transplanted in the left ventricular wall immediately after ligation. Echocardiographic measurements were performed to assess cardiac function. Tissue architecture of the myocardium was examined by histological analysis to determine fate of the transplanted cells. MSCs were successfully isolated from human umbilical cord tissue. 2-DC treatment did not produce any significant cytotoxic effect in UC-MSCs at all concentrations. qPCR analysis of treated UC-MSCs showed induction of myogenic differentiation, which is more pronounced at 20 µM concentration. Fluorescently labeled 2-DC-treated UC-MSCs showed significant (**P < 0.01) homing in the infarcted myocardium as compared to normal UC-MSCs. Hearts transplanted with 2-DC-treated UC-MSCs significantly (***P < 0.001) improved the cardiac systolic and diastolic functions and pumping ability as compared to normal UC-MSCs and MI groups. Fibrotic area and left ventricular wall thickness were significantly improved (***P < 0.001) in 2-DC-treated group as compared to normal UC-MSCs. Immunohistochemical staining showed co-localization of fluorescently labeled cells and patches of differentiated myocytes which were stained for cardiac proteins in the infarct zone implying that the treated UC-MSCs regenerated cardiomyocytes. We report for the first time that 2-DC induces cardiac differentiation in UC-MSCs. Transplanted cells differentiated into functional cardiomyocytes and significantly improved cardiac performance. These pre-differentiated cardiac progenitors showed better survival, homing, and distribution in the infarcted zone. 2-DC treated cells not only improved cardiac function, but also restored tissue homeostasis, suggesting a better therapeutic option for the regeneration of cardiac tissue in the clinical setup.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Desoxicitidina/farmacología , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/efectos de los fármacos , Infarto del Miocardio/terapia , Cordón Umbilical/citología , Animales , Linaje de la Célula , Vasos Coronarios , Ecocardiografía , Fibrosis , Homeostasis , Humanos , Masculino , Miocardio/metabolismo , Miocitos Cardíacos/citología , Reacción en Cadena de la Polimerasa , Ratas , Ratas Wistar , Regeneración , Trasplante Heterólogo
20.
Mol Cell Biochem ; 475(1-2): 27-39, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32737770

RESUMEN

Loss of cardiomyocytes due to myocardial infarction results in ventricular remodeling which includes non-contractile scar formation, which can lead to heart failure. Stem cell therapy aims to replace the scar tissue with the functional myocardium. Mesenchymal stem cells (MSCs) are undifferentiated cells capable of self-renewal as well as differentiation into multiple lineages. MSCs can be differentiated into cardiomyocytes by treating them with small molecules and peptides. Here, we report for the first time, the role of a cyclic peptide, an analogue of dianthin G, [Glu2]-dianthin G (1) in the in vitro cardiac differentiation of rat bone marrow MSCs. In this study, [Glu2]-dianthin G (1) was synthesized using solid-phase total synthesis and characterized by NMR spectroscopy. MSCs were treated with two different concentrations (0.025 and 0.05 mM) of the peptide separately for 72 h and then incubated for 15 days to allow the cells to differentiate into cardiomyocytes. Treated cells were analyzed for the expression of cardiac-specific genes and proteins. Results showed significant upregulation of cardiac-specific genes GATA4, cardiac troponin T (cTnT), cardiac troponin I (cTnI), cardiac myosin heavy chain, and connexin 43 in the treated MSCs compared to the untreated control. For cardiac-specific proteins, GATA4, cTnT, and Nkx2.5 were analyzed in the treated cells and were shown to have significant upregulation as compared to the untreated control. In conclusion, this study has demonstrated the cardiac differentiation potential of [Glu2]-dianthin G (1)-treated rat bone marrow MSCs in vitro both at the gene and at the protein levels. Transplantation of pre-differentiated MSCs into the infarcted myocardium may result in the efficient regeneration of cardiac cells and restoration of normal cardiac function.


Asunto(s)
Células de la Médula Ósea/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Péptidos Cíclicos/farmacología , Proteínas de Plantas/farmacología , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo , Femenino , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Fitoquímicos/farmacología , Ratas , Ratas Wistar , Remodelación Ventricular/efectos de los fármacos , Remodelación Ventricular/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA