Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biophys J ; 113(12): 2736-2749, 2017 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-29262366

RESUMEN

The glucose transporter from Staphylococcus epidermidis, GlcPSe, is a homolog of the human GLUT sugar transporters of the major facilitator superfamily. Together with the xylose transporter from Escherichia coli, XylEEc, the other prominent prokaryotic GLUT homolog, GlcPSe, is equipped with a conserved proton-binding site arguing for an electrogenic transport mode. However, the electrophysiological analysis of GlcPSe presented here reveals important differences between the two GLUT homologs. GlcPSe, unlike XylEEc, does not perform steady-state electrogenic transport at symmetrical pH conditions. Furthermore, when a pH gradient is applied, partially uncoupled transport modes can be generated. In contrast to other bacterial sugar transporters analyzed so far, in GlcPSe sugar binding, translocation and release are also accomplished by the deprotonated transporter. Based on these experimental results, we conclude that coupling of sugar and H+ transport is incomplete in GlcPSe. To verify the viability of the observed partially coupled GlcPSe transport modes, we propose a universal eight-state kinetic model in which any degree of coupling is realized and H+/sugar symport represents only a specific instance. Furthermore, using sequence comparison with strictly coupled XylEEc and similar sugar transporters, we identify an additional charged residue that may be essential for effective H+/sugar symport.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Protones , Azúcares/metabolismo , Concentración de Iones de Hidrógeno
2.
PLoS One ; 7(10): e47938, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23110136

RESUMEN

Since the solution of the molecular structures of members of the voltage dependent anion channels (VDACs), the N-terminal α-helix has been the main focus of attention, since its strategic location, in combination with its putative conformational flexibility, could define or control the channel's gating characteristics. Through engineering of two double-cysteine mVDAC1 variants we achieved fixing of the N-terminal segment at the bottom and midpoint of the pore. Whilst cross-linking at the midpoint resulted in the channel remaining constitutively open, cross-linking at the base resulted in an "asymmetric" gating behavior, with closure only at one electric field's orientation depending on the channel's orientation in the lipid bilayer. Additionally, and while the native channel adopts several well-defined closed states (S1 and S2), the cross-linked variants showed upon closure a clear preference for the S2 state. With native-channel characteristics restored following reduction of the cysteines, it is evident that the conformational flexibility of the N-terminal segment plays indeed a major part in the control of the channel's gating behavior.


Asunto(s)
Activación del Canal Iónico/fisiología , Modelos Moleculares , Conformación Proteica , Canal Aniónico 1 Dependiente del Voltaje/química , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Animales , Clonación Molecular , Cartilla de ADN/genética , Electroforesis en Gel de Poliacrilamida , Ingeniería Genética , Cuerpos de Inclusión/metabolismo , Activación del Canal Iónico/genética , Ratones , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Pliegue de Proteína , Canal Aniónico 1 Dependiente del Voltaje/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA