Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 591(7849): 270-274, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33408410

RESUMEN

Neural mechanisms that mediate the ability to make value-guided decisions have received substantial attention in humans and animals1-6. Experiments in animals typically involve long training periods. By contrast, choices in the real world often need to be made between new options spontaneously. It is therefore possible that the neural mechanisms targeted in animal studies differ from those required for new decisions, which are typical of human imaging studies. Here we show that the primate medial frontal cortex (MFC)7 is involved in making new inferential choices when the options have not been previously experienced. Macaques spontaneously inferred the values of new options via similarities with the component parts of previously encountered options. Functional magnetic resonance imaging (fMRI) suggested that this ability was mediated by the MFC, which is rarely investigated in monkeys3; MFC activity reflected different processes of comparison for unfamiliar and familiar options. Multidimensional representations of options in the MFC used a coding scheme resembling that of grid cells, which is well known in spatial navigation8,9, to integrate dimensions in this non-physical space10 during novel decision-making. By contrast, the orbitofrontal cortex held specific object-based value representations1,11. In addition, minimally invasive ultrasonic disruption12 of MFC, but not adjacent tissue, altered the estimation of novel choice values.


Asunto(s)
Conducta de Elección/fisiología , Lóbulo Frontal/citología , Lóbulo Frontal/fisiología , Macaca mulatta/fisiología , Neuronas/fisiología , Adulto , Animales , Femenino , Células de Red/fisiología , Humanos , Imagen por Resonancia Magnética , Masculino , Corteza Prefrontal/citología , Corteza Prefrontal/fisiología , Navegación Espacial/fisiología , Adulto Joven
2.
PLoS Biol ; 21(1): e3001985, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36716348

RESUMEN

Humans have been shown to strategically explore. They can identify situations in which gathering information about distant and uncertain options is beneficial for the future. Because primates rely on scarce resources when they forage, they are also thought to strategically explore, but whether they use the same strategies as humans and the neural bases of strategic exploration in monkeys are largely unknown. We designed a sequential choice task to investigate whether monkeys mobilize strategic exploration based on whether information can improve subsequent choice, but also to ask the novel question about whether monkeys adjust their exploratory choices based on the contingency between choice and information, by sometimes providing the counterfactual feedback about the unchosen option. We show that monkeys decreased their reliance on expected value when exploration could be beneficial, but this was not mediated by changes in the effect of uncertainty on choices. We found strategic exploratory signals in anterior and mid-cingulate cortex (ACC/MCC) and dorsolateral prefrontal cortex (dlPFC). This network was most active when a low value option was chosen, which suggests a role in counteracting expected value signals, when exploration away from value should to be considered. Such strategic exploration was abolished when the counterfactual feedback was available. Learning from counterfactual outcome was associated with the recruitment of a different circuit centered on the medial orbitofrontal cortex (OFC), where we showed that monkeys represent chosen and unchosen reward prediction errors. Overall, our study shows how ACC/MCC-dlPFC and OFC circuits together could support exploitation of available information to the fullest and drive behavior towards finding more information through exploration when it is beneficial.


Asunto(s)
Conducta de Elección , Corteza Prefrontal , Humanos , Animales , Conducta de Elección/fisiología , Corteza Prefrontal/fisiología , Lóbulo Frontal/fisiología , Recompensa , Macaca mulatta
3.
Mol Psychiatry ; 27(2): 865-872, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34650202

RESUMEN

The triple-network model of psychopathology is a framework to explain the functional and structural neuroimaging phenotypes of psychiatric and neurological disorders. It describes the interactions within and between three distributed networks: the salience, default-mode, and central executive networks. These have been associated with brain disorder traits in patients. Homologous networks have been proposed in animal models, but their integration into a triple-network organization has not yet been determined. Using resting-state datasets, we demonstrate conserved spatio-temporal properties between triple-network elements in human, macaque, and mouse. The model predictions were also shown to apply in a mouse model for depression. To validate spatial homologies, we developed a data-driven approach to convert mouse brain maps into human standard coordinates. Finally, using high-resolution viral tracers in the mouse, we refined an anatomical model for these networks and validated this using optogenetics in mice and tractography in humans. Unexpectedly, we find serotonin involvement within the salience rather than the default-mode network. Our results support the existence of a triple-network system in the mouse that shares properties with that of humans along several dimensions, including a disease condition. Finally, we demonstrate a method to humanize mouse brain networks that opens doors to fully data-driven trans-species comparisons.


Asunto(s)
Imagen por Resonancia Magnética , Red Nerviosa , Animales , Encéfalo , Mapeo Encefálico/métodos , Humanos , Imagen por Resonancia Magnética/métodos , Ratones , Vías Nerviosas
4.
PLoS Biol ; 18(10): e3000899, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33125367

RESUMEN

Animals learn from the past to make predictions. These predictions are adjusted after prediction errors, i.e., after surprising events. Generally, most reward prediction errors models learn the average expected amount of reward. However, here we demonstrate the existence of distinct mechanisms for detecting other types of surprising events. Six macaques learned to respond to visual stimuli to receive varying amounts of juice rewards. Most trials ended with the delivery of either 1 or 3 juice drops so that animals learned to expect 2 juice drops on average even though instances of precisely 2 drops were rare. To encourage learning, we also included sessions during which the ratio between 1 and 3 drops changed. Additionally, in all sessions, the stimulus sometimes appeared in an unexpected location. Thus, 3 types of surprising events could occur: reward amount surprise (i.e., a scalar reward prediction error), rare reward surprise, and visuospatial surprise. Importantly, we can dissociate scalar reward prediction errors-rewards that deviated from the average reward amount expected-and rare reward events-rewards that accorded with the average reward expectation but that rarely occurred. We linked each type of surprise to a distinct pattern of neural activity using functional magnetic resonance imaging. Activity in the vicinity of the dopaminergic midbrain only reflected surprise about the amount of reward. Lateral prefrontal cortex had a more general role in detecting surprising events. Posterior lateral orbitofrontal cortex specifically detected rare reward events regardless of whether they followed average reward amount expectations, but only in learnable reward environments.


Asunto(s)
Recompensa , Animales , Conducta Animal , Encéfalo/fisiología , Modelos Lineales , Macaca , Imagen por Resonancia Magnética , Sustancia Negra/fisiología , Análisis y Desempeño de Tareas , Área Tegmental Ventral/fisiología , Percepción Visual/fisiología
5.
PLoS Biol ; 18(7): e3000810, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32735557

RESUMEN

The temporal association cortex is considered a primate specialization and is involved in complex behaviors, with some, such as language, particularly characteristic of humans. The emergence of these behaviors has been linked to major differences in temporal lobe white matter in humans compared with monkeys. It is unknown, however, how the organization of the temporal lobe differs across several anthropoid primates. Therefore, we systematically compared the organization of the major temporal lobe white matter tracts in the human, gorilla, and chimpanzee great apes and in the macaque monkey. We show that humans and great apes, in particular the chimpanzee, exhibit an expanded and more complex occipital-temporal white matter system; additionally, in humans, the invasion of dorsal tracts into the temporal lobe provides a further specialization. We demonstrate the reorganization of different tracts along the primate evolutionary tree, including distinctive connectivity of human temporal gray matter.


Asunto(s)
Conectoma , Hominidae/anatomía & histología , Macaca/anatomía & histología , Lóbulo Temporal/anatomía & histología , Sustancia Blanca/anatomía & histología , Animales , Humanos
6.
PLoS Biol ; 18(5): e3000605, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32453728

RESUMEN

One of the most influential accounts of central orbitofrontal cortex-that it mediates behavioral flexibility-has been challenged by the finding that discrimination reversal in macaques, the classic test of behavioral flexibility, is unaffected when lesions are made by excitotoxin injection rather than aspiration. This suggests that the critical brain circuit mediating behavioral flexibility in reversal tasks lies beyond the central orbitofrontal cortex. To determine its identity, a group of nine macaques were taught discrimination reversal learning tasks, and its impact on gray matter was measured. Magnetic resonance imaging scans were taken before and after learning and compared with scans from two control groups, each comprising 10 animals. One control group learned discrimination tasks that were similar but lacked any reversal component, and the other control group engaged in no learning. Gray matter changes were prominent in posterior orbitofrontal cortex/anterior insula but were also found in three other frontal cortical regions: lateral orbitofrontal cortex (orbital part of area 12 [12o]), cingulate cortex, and lateral prefrontal cortex. In a second analysis, neural activity in posterior orbitofrontal cortex/anterior insula was measured at rest, and its pattern of coupling with the other frontal cortical regions was assessed. Activity coupling increased significantly in the reversal learning group in comparison with controls. In a final set of experiments, we used similar structural imaging procedures and analyses to demonstrate that aspiration lesion of central orbitofrontal cortex, of the type known to affect discrimination learning, affected structure and activity in the same frontal cortical circuit. The results identify a distributed frontal cortical circuit associated with behavioral flexibility.


Asunto(s)
Aprendizaje Discriminativo/fisiología , Sustancia Gris/fisiología , Corteza Prefrontal/fisiología , Adaptación Psicológica/fisiología , Animales , Femenino , Sustancia Gris/diagnóstico por imagen , Macaca , Imagen por Resonancia Magnética , Masculino , Corteza Prefrontal/diagnóstico por imagen
7.
Cereb Cortex ; 32(18): 4050-4067, 2022 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-34974618

RESUMEN

A critical aspect of neuroscience is to establish whether and how brain networks evolved across primates. To date, most comparative studies have used resting-state functional magnetic resonance imaging (rs-fMRI) in anaesthetized nonhuman primates and in awake humans. However, anaesthesia strongly affects rs-fMRI signals. The present study investigated the impact of the awareness state (anaesthesia vs. awake) within the same group of macaque monkeys on the rs-fMRI functional connectivity organization of a well-characterized network in the human brain, the cingulo-frontal lateral network. Results in awake macaques show that rostral seeds in the cingulate sulcus exhibited stronger correlation strength with rostral compared to caudal lateral frontal cortical areas, while more caudal seeds displayed stronger correlation strength with caudal compared to anterior lateral frontal cortical areas. Critically, this inverse rostro-caudal functional gradient was abolished under anaesthesia. This study demonstrated a similar functional connectivity (FC) organization of the cingulo-frontal cortical network in awake macaque to that previously uncovered in the human brain pointing toward a preserved FC organization from macaque to human. However, it can only be observed in awake state suggesting that this network is sensitive to anaesthesia and warranting significant caution when comparing FC patterns across species under different states.


Asunto(s)
Anestesia , Mapeo Encefálico , Animales , Lóbulo Frontal/diagnóstico por imagen , Humanos , Macaca , Imagen por Resonancia Magnética/métodos
8.
Cereb Cortex ; 32(8): 1608-1624, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-34518890

RESUMEN

Comparative neuroimaging has been used to identify changes in white matter architecture across primate species phylogenetically close to humans, but few have compared the phylogenetically distant species. Here, we acquired postmortem diffusion imaging data from ring-tailed lemurs (Lemur catta), black-capped squirrel monkeys (Saimiri boliviensis), and rhesus macaques (Macaca mulatta). We were able to establish templates and surfaces allowing us to investigate sulcal, cortical, and white matter anatomy. The results demonstrate an expansion of the frontal projections of the superior longitudinal fasciculus complex in squirrel monkeys and rhesus macaques compared to ring-tailed lemurs, which correlates with sulcal anatomy and the lemur's smaller prefrontal granular cortex. The connectivity of the ventral pathway in the parietal region is also comparatively reduced in ring-tailed lemurs, with the posterior projections of the inferior longitudinal fasciculus not extending toward parietal cortical areas as in the other species. In the squirrel monkeys we note a very specific occipito-parietal anatomy that is apparent in their surface anatomy and the expansion of the posterior projections of the optical radiation. Our study supports the hypothesis that the connectivity of the prefrontal-parietal regions became relatively elaborated in the simian lineage after divergence from the prosimian lineage.


Asunto(s)
Sustancia Blanca , Animales , Mapeo Encefálico/métodos , Macaca mulatta , Vías Nerviosas/anatomía & histología , Vías Nerviosas/diagnóstico por imagen , Lóbulo Parietal , Sustancia Blanca/anatomía & histología , Sustancia Blanca/diagnóstico por imagen
9.
Proc Natl Acad Sci U S A ; 117(45): 28452-28462, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33122437

RESUMEN

The orbitofrontal cortex (OFC) is a key brain region involved in complex cognitive functions such as reward processing and decision making. Neuroimaging studies have reported unilateral OFC response to reward-related variables; however, those studies rarely discussed this observation. Nevertheless, some lesion studies suggest that the left and right OFC contribute differently to cognitive processes. We hypothesized that the OFC asymmetrical response to reward could reflect underlying hemispherical difference in OFC functional connectivity. Using resting-state and reward-related functional MRI data from humans and from rhesus macaques, we first identified an asymmetrical response of the lateral OFC to reward in both species. Crucially, the subregion showing the highest reward-related asymmetry (RRA) overlapped with the region showing the highest functional connectivity asymmetry (FCA). Furthermore, the two types of asymmetries were found to be significantly correlated across individuals. In both species, the right lateral OFC was more connected to the default mode network compared to the left lateral OFC. Altogether, our results suggest a functional specialization of the left and right lateral OFC in primates.


Asunto(s)
Corteza Cerebral/fisiopatología , Corteza Prefrontal/fisiopatología , Recompensa , Animales , Conducta , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Mapeo Encefálico , Corteza Cerebral/diagnóstico por imagen , Femenino , Neuroimagen Funcional/métodos , Humanos , Procesamiento de Imagen Asistido por Computador , Macaca mulatta , Imagen por Resonancia Magnética/métodos , Masculino , Corteza Prefrontal/diagnóstico por imagen
10.
J Neurosci ; 2021 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-34099508

RESUMEN

Social behaviour is coordinated by a network of brain regions, including those involved in the perception of social stimuli and those involved in complex functions like inferring perceptual and mental states and controlling social interactions. The properties and function of many of these regions in isolation is relatively well-understood, but less is known about how these regions interact whilst processing dynamic social interactions. To investigate whether the functional connectivity between brain regions is modulated by social context, we collected functional MRI (fMRI) data from male monkeys (Macaca mulatta) viewing videos of social interactions labelled as "affiliative", "aggressive", or "ambiguous". We show activation related to the perception of social interactions along both banks of the superior temporal sulcus, parietal cortex, medial and lateral frontal cortex, and the caudate nucleus. Within this network, we show that fronto-temporal functional connectivity is significantly modulated by social context. Crucially, we link the observation of specific behaviours to changes in functional connectivity within our network. Viewing aggressive behaviour was associated with a limited increase in temporo-temporal and a weak increase in cingulate-temporal connectivity. By contrast, viewing interactions where the outcome was uncertain was associated with a pronounced increase in temporo-temporal, and cingulate-temporal functional connectivity. We hypothesise that this widespread network synchronisation occurs when cingulate and temporal areas coordinate their activity when more difficult social inferences are being made.SIGNIFICANCE STATEMENT:Processing social information from our environment requires the activation of several brain regions, which are concentrated within the frontal and temporal lobes. However, little is known about how these areas interact to facilitate the processing of different social interactions. Here we show that functional connectivity within and between the frontal and temporal lobes is modulated by social context. Specifically, we demonstrate that viewing social interactions where the outcome was unclear is associated with increased synchrony within and between the cingulate cortex and temporal cortices. These findings suggest that the coordination between the cingulate and temporal cortices is enhanced when more difficult social inferences are being made.

11.
Cereb Cortex ; 31(10): 4612-4627, 2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-33982758

RESUMEN

Humans are a highly social species. Complex interactions for mutual support range from helping neighbors to building social welfare institutions. During times of distress or crisis, sharing life experiences within one's social circle is critical for well-being. By translating pattern-learning algorithms to the UK Biobank imaging-genetics cohort (n = ~40 000 participants), we have delineated manifestations of regular social support in multimodal whole-brain measurements. In structural brain variation, we identified characteristic volumetric signatures in the salience and limbic networks for high- versus low-social support individuals. In patterns derived from functional coupling, we also located interindividual differences in social support in action-perception circuits related to binding sensory cues and initiating behavioral responses. In line with our demographic profiling analysis, the uncovered neural substrates have potential implications for loneliness, substance misuse, and resilience to stress.


Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/fisiología , Grupo Paritario , Apoyo Social , Adulto , Algoritmos , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Estudios de Cohortes , Femenino , Humanos , Individualidad , Aprendizaje/fisiología , Sistema Límbico/fisiología , Soledad/psicología , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Red Nerviosa/fisiología , Estudios Prospectivos , Resiliencia Psicológica , Medio Social , Trastornos Relacionados con Sustancias/fisiopatología , Reino Unido
12.
Neuroimage ; 245: 118693, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34732327

RESUMEN

Social interaction is thought to provide a selection pressure for human intelligence, yet little is known about its neurobiological basis and evolution throughout the primate lineage. Recent advances in neuroimaging have enabled whole brain investigation of brain structure, function, and connectivity in humans and non-human primates (NHPs), leading to a nascent field of comparative connectomics. However, linking social behavior to brain organization across the primates remains challenging. Here, we review the current understanding of the macroscale neural mechanisms of social behaviors from the viewpoint of system neuroscience. We first demonstrate an association between the number of cortical neurons and the size of social groups across primates, suggesting a link between neural information-processing capacity and social capabilities. Moreover, by capitalizing on recent advances in species-harmonized functional MRI, we demonstrate that portions of the mirror neuron system and default-mode networks, which are thought to be important for representation of the other's actions and sense of self, respectively, exhibit similarities in functional organization in macaque monkeys and humans, suggesting possible homologies. With respect to these two networks, we describe recent developments in the neurobiology of social perception, joint attention, personality and social complexity. Together, the Human Connectome Project (HCP)-style comparative neuroimaging, hyperscanning, behavioral, and other multi-modal investigations are expected to yield important insights into the evolutionary foundations of human social behavior.


Asunto(s)
Conectoma/métodos , Neuroimagen/métodos , Conducta Social , Animales , Imagen por Resonancia Magnética , Primates
13.
Neuroimage ; 235: 118017, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33794355

RESUMEN

Brain perturbation studies allow detailed causal inferences of behavioral and neural processes. Because the combination of brain perturbation methods and neural measurement techniques is inherently challenging, research in humans has predominantly focused on non-invasive, indirect brain perturbations, or neurological lesion studies. Non-human primates have been indispensable as a neurobiological system that is highly similar to humans while simultaneously being more experimentally tractable, allowing visualization of the functional and structural impact of systematic brain perturbation. This review considers the state of the art in non-human primate brain perturbation with a focus on approaches that can be combined with neuroimaging. We consider both non-reversible (lesions) and reversible or temporary perturbations such as electrical, pharmacological, optical, optogenetic, chemogenetic, pathway-selective, and ultrasound based interference methods. Method-specific considerations from the research and development community are offered to facilitate research in this field and support further innovations. We conclude by identifying novel avenues for further research and innovation and by highlighting the clinical translational potential of the methods.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Neuroimagen/métodos , Animales , Humanos , Optogenética , Primates
14.
Neuroimage ; 228: 117685, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33359344

RESUMEN

Evolution, as we currently understand it, strikes a delicate balance between animals' ancestral history and adaptations to their current niche. Similarities between species are generally considered inherited from a common ancestor whereas observed differences are considered as more recent evolution. Hence comparing species can provide insights into the evolutionary history. Comparative neuroimaging has recently emerged as a novel subdiscipline, which uses magnetic resonance imaging (MRI) to identify similarities and differences in brain structure and function across species. Whereas invasive histological and molecular techniques are superior in spatial resolution, they are laborious, post-mortem, and oftentimes limited to specific species. Neuroimaging, by comparison, has the advantages of being applicable across species and allows for fast, whole-brain, repeatable, and multi-modal measurements of the structure and function in living brains and post-mortem tissue. In this review, we summarise the current state of the art in comparative anatomy and function of the brain and gather together the main scientific questions to be explored in the future of the fascinating new field of brain evolution derived from comparative neuroimaging.


Asunto(s)
Anatomía Comparada/tendencias , Evolución Biológica , Encéfalo/anatomía & histología , Encéfalo/fisiología , Neuroimagen/tendencias , Anatomía Comparada/métodos , Animales , Humanos , Neuroimagen/métodos , Primates
15.
Cereb Cortex ; 30(9): 4979-4994, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32390051

RESUMEN

The two catecholamines, noradrenaline and dopamine, have been shown to play comparable roles in behavior. Both noradrenergic and dopaminergic neurons respond to cues predicting reward availability and novelty. However, even though both are thought to be involved in motivating actions, their roles in motivation have seldom been directly compared. We therefore examined the activity of putative noradrenergic neurons in the locus coeruleus and putative midbrain dopaminergic neurons in monkeys cued to perform effortful actions for rewards. The activity in both regions correlated with engagement with a presented option. By contrast, only noradrenaline neurons were also (i) predictive of engagement in a subsequent trial following a failure to engage and (ii) more strongly activated in nonrepeated trials, when cues indicated a new task condition. This suggests that while both catecholaminergic neurons are involved in promoting action, noradrenergic neurons are sensitive to task state changes, and their influence on behavior extends beyond the immediately rewarded action.


Asunto(s)
Neuronas Adrenérgicas/fisiología , Neuronas Dopaminérgicas/fisiología , Locus Coeruleus/fisiología , Mesencéfalo/fisiología , Motivación/fisiología , Animales , Macaca mulatta , Masculino , Recompensa
16.
J Neurosci ; 39(19): 3627-3639, 2019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-30833514

RESUMEN

The ventromedial prefrontal cortex (vmPFC), which comprises several distinct cytoarchitectonic areas, is a key brain region supporting decision-making processes, and it has been shown to be one of the main hubs of the Default Mode Network, a network classically activated during resting state. We here examined the interindividual variability in the vmPFC sulcal morphology in 57 humans (37 females) and demonstrated that the presence/absence of the inferior rostral sulcus and the subgenual intralimbic sulcus influences significantly the sulcal organization of this region. Furthermore, the sulcal organization influences the location of the vmPFC peak of the Default Mode Network, demonstrating that the location of functional activity can be affected by local sulcal patterns. These results are critical for the investigation of the function of the vmPFC and show that taking into account the sulcal variability might be essential to guide the interpretation of neuroimaging studies.SIGNIFICANCE STATEMENT The ventromedial prefrontal cortex (vmPFC) is one of the main hubs of the Default Mode Network and plays a central role in value coding and decision-making. The present study provides a complete description of the interindividual variability of anatomical morphology of this large portion of prefrontal cortex and its relation to functional organization. We have shown that two supplementary medial sulci predominantly determine the organization of the vmPFC, which in turn affects the location of the functional peak of activity in this region. Those results show that taking into account the variability in sulcal patterns might be essential to guide the interpretation of neuroimaging studies of the human brain and of the vmPFC in particular.


Asunto(s)
Conectoma/métodos , Imagen por Resonancia Magnética/métodos , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/fisiología , Femenino , Humanos , Masculino
17.
Neuroimage ; 217: 116923, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32407993

RESUMEN

We present a new software package with a library of standardised tractography protocols devised for the robust automated extraction of white matter tracts both in the human and the macaque brain. Using in vivo data from the Human Connectome Project (HCP) and the UK Biobank and ex vivo data for the macaque brain datasets, we obtain white matter atlases, as well as atlases for tract endpoints on the white-grey matter boundary, for both species. We illustrate that our protocols are robust against data quality, generalisable across two species and reflect the known anatomy. We further demonstrate that they capture inter-subject variability by preserving tract lateralisation in humans and tract similarities stemming from twinship in the HCP cohort. Our results demonstrate that the presented toolbox will be useful for generating imaging-derived features in large cohorts, and in facilitating comparative neuroanatomy studies. The software, tractography protocols, and atlases are publicly released through FSL, allowing users to define their own tractography protocols in a standardised manner, further contributing to open science.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen de Difusión Tensora/normas , Procesamiento de Imagen Asistido por Computador/normas , Animales , Atlas como Asunto , Automatización , Encéfalo/anatomía & histología , Conectoma , Bases de Datos Factuales , Imagen de Difusión por Resonancia Magnética , Imagen de Difusión Tensora/métodos , Sustancia Gris/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Macaca mulatta , Vías Nerviosas/diagnóstico por imagen , Programas Informáticos , Sustancia Blanca/anatomía & histología , Sustancia Blanca/diagnóstico por imagen
18.
Proc Natl Acad Sci U S A ; 112(20): E2695-704, 2015 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-25947150

RESUMEN

Reward-guided decision-making depends on a network of brain regions. Among these are the orbitofrontal and the anterior cingulate cortex. However, it is difficult to ascertain if these areas constitute anatomical and functional unities, and how these areas correspond between monkeys and humans. To address these questions we looked at connectivity profiles of these areas using resting-state functional MRI in 38 humans and 25 macaque monkeys. We sought brain regions in the macaque that resembled 10 human areas identified with decision making and brain regions in the human that resembled six macaque areas identified with decision making. We also used diffusion-weighted MRI to delineate key human orbital and medial frontal brain regions. We identified 21 different regions, many of which could be linked to particular aspects of reward-guided learning, valuation, and decision making, and in many cases we identified areas in the macaque with similar coupling profiles.


Asunto(s)
Toma de Decisiones/fisiología , Lóbulo Frontal/fisiología , Aprendizaje/fisiología , Macaca/fisiología , Modelos Neurológicos , Animales , Conectoma/métodos , Humanos , Imagen por Resonancia Magnética , Recompensa , Especificidad de la Especie
19.
J Neurosci ; 36(33): 8574-85, 2016 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-27535906

RESUMEN

UNLABELLED: In humans, cognitively demanding tasks of many types recruit common frontoparietal brain areas. Pervasive activation of this "multiple-demand" (MD) network suggests a core function in supporting goal-oriented behavior. A similar network might therefore be predicted in nonhuman primates that readily perform similar tasks after training. However, an MD network in nonhuman primates has not been described. Single-cell recordings from macaque frontal and parietal cortex show some similar properties to human MD fMRI responses (e.g., adaptive coding of task-relevant information). Invasive recordings, however, come from limited prespecified locations, so they do not delineate a macaque homolog of the MD system and their positioning could benefit from knowledge of where MD foci lie. Challenges of scanning behaving animals mean that few macaque fMRI studies specifically contrast levels of cognitive demand, so we sought to identify a macaque counterpart to the human MD system using fMRI connectivity in 35 rhesus macaques. Putative macaque MD regions, mapped from frontoparietal MD regions defined in humans, were found to be functionally connected under anesthesia. To further refine these regions, an iterative process was used to maximize their connectivity cross-validated across animals. Finally, whole-brain connectivity analyses identified voxels that were robustly connected to MD regions, revealing seven clusters across frontoparietal and insular cortex comparable to human MD regions and one unexpected cluster in the lateral fissure. The proposed macaque MD regions can be used to guide future electrophysiological investigation of MD neural coding and in task-based fMRI to test predictions of similar functional properties to human MD cortex. SIGNIFICANCE STATEMENT: In humans, a frontoparietal "multiple-demand" (MD) brain network is recruited during a wide range of cognitively demanding tasks. Because this suggests a fundamental function, one might expect a similar network to exist in nonhuman primates, but this remains controversial. Here, we sought to identify a macaque counterpart to the human MD system using fMRI connectivity. Putative macaque MD regions were functionally connected under anesthesia and were further refined by iterative optimization. The result is a network including lateral frontal, dorsomedial frontal, and insular and inferior parietal regions closely similar to the human counterpart. The proposed macaque MD regions can be useful in guiding electrophysiological recordings or in task-based fMRI to test predictions of similar functional properties to human MD cortex.


Asunto(s)
Mapeo Encefálico , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Vías Nerviosas/fisiología , Animales , Femenino , Humanos , Imagenología Tridimensional , Macaca mulatta , Imagen por Resonancia Magnética , Masculino , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiología , Vías Nerviosas/diagnóstico por imagen
20.
Hum Brain Mapp ; 38(9): 4788-4805, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28608647

RESUMEN

In this quantitative review, we specified the anatomical basis of brain activity reported in the Temporo-Parietal Junction (TPJ) in Theory of Mind (ToM) research. Using probabilistic brain atlases, we labeled TPJ peak coordinates reported in the literature. This was carried out for four different atlas modalities: (i) gyral-parcellation, (ii) sulco-gyral parcellation, (iii) cytoarchitectonic parcellation and (iv) connectivity-based parcellation. In addition, our review distinguished between two ToM task types (false belief and social animations) and a nonsocial task (attention reorienting). We estimated the mean probabilities of activation for each atlas label, and found that for all three task types part of TPJ activations fell into the same areas: (i) Angular Gyrus (AG) and Lateral Occpital Cortex (LOC) in terms of a gyral atlas, (ii) AG and Superior Temporal Sulcus (STS) in terms of a sulco-gyral atlas, (iii) areas PGa and PGp in terms of cytoarchitecture and (iv) area TPJp in terms of a connectivity-based parcellation atlas. Beside these commonalities, we also found that individual task types showed preferential activation for particular labels. Main findings for the right hemisphere were preferential activation for false belief tasks in AG/PGa, and in Supramarginal Gyrus (SMG)/PFm for attention reorienting. Social animations showed strongest selective activation in the left hemisphere, specifically in left Middle Temporal Gyrus (MTG). We discuss how our results (i.e., identified atlas structures) can provide a new reference for describing future findings, with the aim to integrate different labels and terminologies used for studying brain activity around the TPJ. Hum Brain Mapp 38:4788-4805, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Neuroimagen , Lóbulo Parietal/anatomía & histología , Lóbulo Parietal/diagnóstico por imagen , Lóbulo Temporal/anatomía & histología , Lóbulo Temporal/diagnóstico por imagen , Teoría de la Mente/fisiología , Animales , Humanos , Neuroimagen/métodos , Lóbulo Parietal/fisiología , Lóbulo Temporal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA