Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
BMC Bioinformatics ; 24(1): 17, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36647008

RESUMEN

Colorectal cancer (CRC) is the third most common cancer and the second most deathly worldwide. It is a very heterogeneous disease that can develop via distinct pathways where metastasis is the primary cause of death. Therefore, it is crucial to understand the molecular mechanisms underlying metastasis. RNA-sequencing is an essential tool used for studying the transcriptional landscape. However, the high-dimensionality of gene expression data makes selecting novel metastatic biomarkers problematic. To distinguish early-stage CRC patients at risk of developing metastasis from those that are not, three types of binary classification approaches were used: (1) classification methods (decision trees, linear and radial kernel support vector machines, logistic regression, and random forest) using differentially expressed genes (DEGs) as input features; (2) regularized logistic regression based on the Elastic Net penalty and the proposed iTwiner-a network-based regularizer accounting for gene correlation information; and (3) classification methods based on the genes pre-selected using regularized logistic regression. Classifiers using the DEGs as features showed similar results, with random forest showing the highest accuracy. Using regularized logistic regression on the full dataset yielded no improvement in the methods' accuracy. Further classification using the pre-selected genes found by different penalty factors, instead of the DEGs, significantly improved the accuracy of the binary classifiers. Moreover, the use of network-based correlation information (iTwiner) for gene selection produced the best classification results and the identification of more stable and robust gene sets. Some are known to be tumor suppressor genes (OPCML-IT2), to be related to resistance to cancer therapies (RAC1P3), or to be involved in several cancer processes such as genome stability (XRCC6P2), tumor growth and metastasis (MIR602) and regulation of gene transcription (NME2P2). We show that the classification of CRC patients based on pre-selected features by regularized logistic regression is a valuable alternative to using DEGs, significantly increasing the models' predictive performance. Moreover, the use of correlation-based penalization for biomarker selection stands as a promising strategy for predicting patients' groups based on RNA-seq data.


Asunto(s)
Neoplasias Colorrectales , Humanos , Biomarcadores , Modelos Logísticos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Moléculas de Adhesión Celular , Proteínas Ligadas a GPI
2.
J Biol Chem ; 291(25): 13271-85, 2016 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-27129775

RESUMEN

Cofactors of LIM domain proteins, CLIM1 and CLIM2, are widely expressed transcriptional cofactors that are recruited to gene regulatory regions by DNA-binding proteins, including LIM domain transcription factors. In the cornea, epithelium-specific expression of a dominant negative (DN) CLIM under the keratin 14 (K14) promoter causes blistering, wounding, inflammation, epithelial hyperplasia, and neovascularization followed by epithelial thinning and subsequent epidermal-like differentiation of the corneal epithelium. The defects in corneal epithelial differentiation and cell fate determination suggest that CLIM may regulate corneal progenitor cells and the transition to differentiation. Consistent with this notion, the K14-DN-Clim corneal epithelium first exhibits increased proliferation followed by fewer progenitor cells with decreased proliferative potential. In vivo ChIP-sequencing experiments with corneal epithelium show that CLIM binds to and regulates numerous genes involved in cell adhesion and proliferation, including limbally enriched genes. Intriguingly, CLIM associates primarily with non-LIM homeodomain motifs in corneal epithelial cells, including that of estrogen receptor α. Among CLIM targets is the noncoding RNA H19 whose deregulation is associated with Silver-Russell and Beckwith-Wiedemann syndromes. We demonstrate here that H19 negatively regulates corneal epithelial proliferation. In addition to cell cycle regulators, H19 affects the expression of multiple cell adhesion genes. CLIM interacts with estrogen receptor α at the H19 locus, potentially explaining the higher expression of H19 in female than male corneas. Together, our results demonstrate an important role for CLIM in regulating the proliferative potential of corneal epithelial progenitors and identify CLIM downstream target H19 as a regulator of corneal epithelial proliferation and adhesion.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Células Epiteliales/fisiología , Receptor alfa de Estrógeno/metabolismo , Proteínas con Dominio LIM/metabolismo , ARN Largo no Codificante/genética , Células Madre/fisiología , Factores de Transcripción/metabolismo , Animales , Adhesión Celular , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Proliferación Celular , Epitelio Corneal/citología , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Ratones Transgénicos , ARN Largo no Codificante/metabolismo
3.
PLoS Genet ; 10(7): e1004520, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25079073

RESUMEN

Mammary gland branching morphogenesis and ductal homeostasis relies on mammary stem cell function for the maintenance of basal and luminal cell compartments. The mechanisms of transcriptional regulation of the basal cell compartment are currently unknown. We explored these mechanisms in the basal cell compartment and identified the Co-factor of LIM domains (CLIM/LDB/NLI) as a transcriptional regulator that maintains these cells. Clims act within the basal cell compartment to promote branching morphogenesis by maintaining the number and proliferative potential of basal mammary epithelial stem cells. Clim2, in a complex with LMO4, supports mammary stem cells by directly targeting the Fgfr2 promoter in basal cells to increase its expression. Strikingly, Clims also coordinate basal-specific transcriptional programs to preserve luminal cell identity. These basal-derived cues inhibit epidermis-like differentiation of the luminal cell compartment and enhance the expression of luminal cell-specific oncogenes ErbB2 and ErbB3. Consistently, basal-expressed Clims promote the initiation and progression of breast cancer in the MMTV-PyMT tumor model, and the Clim-regulated branching morphogenesis gene network is a prognostic indicator of poor breast cancer outcome in humans.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Neoplasias de la Mama/genética , Proteínas de Unión al ADN/genética , Proteínas con Dominio LIM/genética , Neoplasias Basocelulares/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Factores de Transcripción/genética , Neoplasias de la Mama/metabolismo , Carcinogénesis/genética , Diferenciación Celular/genética , Células Epiteliales/metabolismo , Células Epiteliales/patología , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Glándulas Mamarias Humanas/metabolismo , Glándulas Mamarias Humanas/patología , Neoplasias Basocelulares/metabolismo , Regiones Promotoras Genéticas , Estructura Terciaria de Proteína , Receptor ErbB-2/genética , Células Madre/metabolismo , Células Madre/patología
4.
J Biol Chem ; 288(48): 34304-24, 2013 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-24142692

RESUMEN

The cornea is the clear, outermost portion of the eye composed of three layers: an epithelium that provides a protective barrier while allowing transmission of light into the eye, a collagen-rich stroma, and an endothelium monolayer. How cornea development and aging is controlled is poorly understood. Here we characterize the mouse cornea transcriptome from early embryogenesis through aging and compare it with transcriptomes of other epithelial tissues, identifying cornea-enriched genes, pathways, and transcriptional regulators. Additionally, we profiled cornea epithelium and stroma, defining genes enriched in these layers. Over 10,000 genes are differentially regulated in the mouse cornea across the time course, showing dynamic expression during development and modest expression changes in fewer genes during aging. A striking transition time point for gene expression between postnatal days 14 and 28 corresponds with completion of cornea development at the transcriptional level. Clustering classifies co-expressed, and potentially co-regulated, genes into biologically informative categories, including groups that exhibit epithelial or stromal enriched expression. Based on these findings, and through loss of function studies and ChIP-seq, we show that the Ets transcription factor EHF promotes cornea epithelial fate through complementary gene activating and repressing activities. Furthermore, we identify potential interactions between EHF, KLF4, and KLF5 in promoting cornea epithelial differentiation. These data provide insights into the mechanisms underlying epithelial development and aging, identifying EHF as a regulator of cornea epithelial identity and pointing to interactions between Ets and KLF factors in promoting epithelial fate. Furthermore, this comprehensive gene expression data set for the cornea is a powerful tool for discovery of novel cornea regulators and pathways.


Asunto(s)
Córnea/crecimiento & desarrollo , Desarrollo Embrionario/genética , Células Epiteliales/metabolismo , Factores de Transcripción/genética , Envejecimiento/genética , Animales , Diferenciación Celular , Linaje de la Célula , Córnea/citología , Córnea/metabolismo , Células Epiteliales/citología , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Factores de Transcripción/metabolismo
5.
Dev Biol ; 369(2): 249-60, 2012 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-22819674

RESUMEN

Agr2 is a putative protein disulfide isomerase (PDI) initially identified as an estrogen-responsive gene in breast cancer cell lines. While Agr2 expression in breast cancer is positively correlated with estrogen receptor (ER) expression, it is upregulated in both hormone dependent and independent carcinomas. Several in vitro and xenograft studies have implicated Agr2 in different oncogenic features of breast cancer; however, the physiological role of Agr2 in normal mammary gland development remains to be defined. Agr2 expression is developmentally regulated in the mammary gland, with maximum expression during late pregnancy and lactation. Using a mammary gland specific knockout mouse model, we show that Agr2 facilitates normal lobuloalveolar development by regulating mammary epithelial cell proliferation; we found no effects on apoptosis in Agr2(-/-) mammary epithelial cells. Consequently, mammary glands of Agr2(-/-) females exhibit reduced expression of milk proteins, and by two weeks post-partum their pups are smaller in size. Utilizing a conditional mouse model, we show that Agr2 constitutive expression drives precocious lobuloalveolar development and increased milk protein expression in the virgin mammary gland. In vitro studies using knock down and overexpression strategies in estrogen receptor positive and negative mammary epithelial cell lines demonstrate a role for Agr2 in estradiol-induced cell proliferation. In conclusion, the estrogen-responsive Agr2, a candidate breast cancer oncogene, regulates epithelial cell proliferation and lobuloalveolar development in the mammary gland. The pro-proliferative effects of Agr2 may explain its actions in early tumorigenesis.


Asunto(s)
Glándulas Mamarias Animales/crecimiento & desarrollo , Glándulas Mamarias Animales/metabolismo , Mucoproteínas/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Animales , Apoptosis , Secuencia de Bases , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cartilla de ADN/genética , Células Epiteliales/citología , Células Epiteliales/metabolismo , Estradiol/farmacología , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , Glándulas Mamarias Animales/citología , Ratones , Ratones Noqueados , Ratones Transgénicos , Mucoproteínas/deficiencia , Mucoproteínas/genética , Proteínas Oncogénicas , Embarazo , Proteína Disulfuro Isomerasas/deficiencia , Proteína Disulfuro Isomerasas/genética , Proteínas/antagonistas & inhibidores , Proteínas/genética , Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética
6.
Breast Cancer Res ; 15(2): 204, 2013 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-23635006

RESUMEN

Initially discovered as an estrogen-responsive gene in breast cancer cell lines, anterior gradient 2 (AGR2) is a developmentally regulated gene belonging to the protein disulfide isomerase (PDI) gene family. Developmentally, AGR2 is expressed in the mammary gland in an estrogen-dependent manner, and AGR2 knockout and overexpression mouse models indicate that the gene promotes lobuloalveolar development by stimulating cell proliferation. Although AGR2 overexpression alone seems insufficient for breast tumorigenesis in mice, several lines of investigations suggest that AGR2 promotes breast tumorigenesis. Overexpression of AGR2 in several breast cancer cell lines increases cell survival in clonogenic assays and cell proliferation, whereas AGR2 loss of function leads to decreased cell cycle progression and cell death. In addition, AGR2 was shown to promote metastasis of breast epithelial cells in an in vivo metastasis assay. As a PDI, AGR2 is thought to be involved in the unfolded protein response that alleviates endoplasmic reticulum stress. Since cancer has to overcome proteotoxic stress due to excess protein production, AGR2 may be one of many pro-survival factors recruited to assist in protein folding or degradation or both. When AGR2 is secreted, it plays a role in cellular adhesion and dissemination of metastatic tumor cells. In breast cancer, AGR2 expression is associated with estrogen receptor (ER)-positive tumors; its overexpression is a predictor of poor prognosis. The AGR2 gene is directly targeted by ER-alpha, which is preferentially bound in tumors with poor outcome. Whereas aromatase inhibitor therapy decreases AGR2 expression, tamoxifen acts as an agonist of AGR2 expression in ER-positive tumors, perhaps contributing to tamoxifen resistance. AGR2 is also overexpressed in a subset of ER-negative tumors. Furthermore, AGR2 expression is associated with the dissemination of metastatic breast cancer cells and can be used as a marker to identify circulating tumor cells and metastatic cells in sentinel lymph nodes. In conclusion, AGR2 is a promising drug target in breast cancer and may serve as a useful prognostic indicator as well as a marker of breast cancer metastasis.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Terapia Molecular Dirigida , Proteínas/antagonistas & inhibidores , Animales , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/patología , Femenino , Humanos , Ratones , Mucoproteínas , Proteínas Oncogénicas , Proteínas/metabolismo
7.
Commun Biol ; 5(1): 937, 2022 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-36085309

RESUMEN

Colorectal cancer (CRC) is a highly diverse disease, where different genomic instability pathways shape genetic clonal diversity and tumor microenvironment. Although intra-tumor heterogeneity has been characterized in primary tumors, its origin and consequences in CRC outcome is not fully understood. Therefore, we assessed intra- and inter-tumor heterogeneity of a prospective cohort of 136 CRC samples. We demonstrate that CRC diversity is forged by asynchronous forms of molecular alterations, where mutational and chromosomal instability collectively boost CRC genetic and microenvironment intra-tumor heterogeneity. We were able to depict predictor signatures of cancer-related genes that can foresee heterogeneity levels across the different tumor consensus molecular subtypes (CMS) and primary tumor location. Finally, we show that high genetic and microenvironment heterogeneity are associated with lower metastatic potential, whereas late-emerging copy number variations favor metastasis development and polyclonal seeding. This study provides an exhaustive portrait of the interplay between genetic and microenvironment intra-tumor heterogeneity across CMS subtypes, depicting molecular events with predictive value of CRC progression and metastasis development.


Asunto(s)
Neoplasias Colorrectales , Variaciones en el Número de Copia de ADN , Neoplasias Colorrectales/genética , Humanos , Oncogenes , Estudios Prospectivos , Microambiente Tumoral/genética
8.
Genome Med ; 14(1): 143, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-36536472

RESUMEN

BACKGROUND: Intratumoral heterogeneity (ITH) is a hallmark of clear cell renal cell carcinoma (ccRCC) that reflects the trajectory of evolution and influences clinical prognosis. Here, we seek to elucidate how ITH and tumor evolution during immune checkpoint inhibitor (ICI) treatment can lead to therapy resistance. METHODS: Here, we completed a single-arm pilot study to examine the safety and feasibility of neoadjuvant nivolumab in patients with localized RCC. Primary endpoints were safety and feasibility of neoadjuvant nivolumab. Then, we spatiotemporally profiled the genomic and immunophenotypic characteristics of 29 ccRCC patients, including pre- and post-therapy samples from 17 ICI-treated patients. Deep multi-regional whole-exome and transcriptome sequencing were performed on 29 patients at different time points before and after ICI therapy. T cell repertoire was also monitored from tissue and peripheral blood collected from a subset of patients to study T cell clonal expansion during ICI therapy. RESULTS: Angiogenesis, lymphocytic infiltration, and myeloid infiltration varied significantly across regions of the same patient, potentially confounding their utility as biomarkers of ICI response. Elevated ITH associated with a constellation of both genomic features (HLA LOH, CDKN2A/B loss) and microenvironmental features, including elevated myeloid expression, reduced peripheral T cell receptor (TCR) diversity, and putative neoantigen depletion. Hypothesizing that ITH may itself play a role in shaping ICI response, we derived a transcriptomic signature associated with neoantigen depletion that strongly associated with response to ICI and targeted therapy treatment in several independent clinical trial cohorts. CONCLUSIONS: These results argue that genetic and immune heterogeneity jointly co-evolve and influence response to ICI in ccRCC. Our findings have implications for future biomarker development for ICI response across ccRCC and other solid tumors and highlight important features of tumor evolution under ICI treatment. TRIAL REGISTRATION: The study was registered on ClinicalTrial.gov (NCT02595918) on November 4, 2015.


Asunto(s)
Carcinoma de Células Renales , Carcinoma , Neoplasias Renales , Humanos , Carcinoma de Células Renales/genética , Nivolumab , Proyectos Piloto , Linfocitos T , Neoplasias Renales/genética , Microambiente Tumoral
9.
NPJ Genom Med ; 6(1): 13, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33589643

RESUMEN

Colorectal cancer (CRC) is one of the most lethal malignancies. The extreme heterogeneity in survival rate is driving the need for new prognostic biomarkers. Human endogenous retroviruses (hERVs) have been suggested to influence tumor progression, oncogenesis and elicit an immune response. We examined multiple next-generation sequencing (NGS)-derived biomarkers in 114 CRC patients with paired whole-exome and whole-transcriptome sequencing (WES and WTS, respectively). First, we demonstrate that the median expression of hERVs can serve as a potential biomarker for prognosis, relapse, and resistance to chemotherapy in stage II and III CRC. We show that hERV expression and CD8+ tumor-infiltrating T-lymphocytes (TILs) synergistically stratify overall and relapse-free survival (OS and RFS): the median OS of the CD8-/hERV+ subgroup was 29.8 months compared with 37.5 months for other subgroups (HR = 4.4, log-rank P < 0.001). Combing NGS-based biomarkers (hERV/CD8 status) with clinicopathological factors provided a better prediction of patient survival compared to clinicopathological factors alone. Moreover, we explored the association between genomic and transcriptomic features of tumors with high hERV expression and establish this subtype as distinct from previously described consensus molecular subtypes of CRC. Overall, our results underscore a previously unknown role for hERVs in leading to a more aggressive subtype of CRC.

10.
Cancer Cell ; 39(5): 662-677.e6, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33861994

RESUMEN

Clear cell renal cell carcinomas (ccRCCs) are highly immune infiltrated, but the effect of immune heterogeneity on clinical outcome in ccRCC has not been fully characterized. Here we perform paired single-cell RNA (scRNA) and T cell receptor (TCR) sequencing of 167,283 cells from multiple tumor regions, lymph node, normal kidney, and peripheral blood of two immune checkpoint blockade (ICB)-naïve and four ICB-treated patients to map the ccRCC immune landscape. We detect extensive heterogeneity within and between patients, with enrichment of CD8A+ tissue-resident T cells in a patient responsive to ICB and tumor-associated macrophages (TAMs) in a resistant patient. A TCR trajectory framework suggests distinct T cell differentiation pathways between patients responding and resistant to ICB. Finally, scRNA-derived signatures of tissue-resident T cells and TAMs are associated with response to ICB and targeted therapies across multiple independent cohorts. Our study establishes a multimodal interrogation of the cellular programs underlying therapeutic efficacy in ccRCC.


Asunto(s)
Carcinoma de Células Renales/genética , Neoplasias Renales/genética , Activación de Linfocitos/inmunología , Linfocitos T/inmunología , Humanos , Neoplasias Renales/inmunología , Activación de Linfocitos/genética , Receptor de Muerte Celular Programada 1/genética , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología
11.
Curr Genet ; 56(5): 439-46, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20617318

RESUMEN

Sequence analysis of organelle genomes and comprehensive analysis of C-to-U editing sites from flowering and non-flowering plants have provided extensive sequence information from diverse taxa. This study includes the first comprehensive analysis of RNA editing sites from a gymnosperm mitochondrial genome, and utilizes informatics analyses to determine conserved features in the RNA sequence context around editing sites. We have identified 565 editing sites in 21 full-length and 4 partial cDNAs of the 39 protein-coding genes identified from the mitochondrial genome of Cycas taitungensis. The information profiles and RNA sequence context of C-to-U editing sites in the Cycas genome exhibit similarity in the immediate flanking nucleotides. Relative entropy analyses indicate that similar regions in the 5' flanking 20 nucleotides have information content compared to angiosperm mitochondrial genomes. These results suggest that evolutionary constraints exist on the nucleotide sequences immediately adjacent to C-to-U editing sites, and similar regions are utilized in editing site recognition.


Asunto(s)
Cycadopsida/genética , Cycas/genética , Genoma Mitocondrial , Magnoliopsida/genética , Edición de ARN , Secuencia de Bases , ADN Mitocondrial/genética , Evolución Molecular , Genes Mitocondriales , Genes de Plantas , Genoma de Planta , Mitocondrias , Orgánulos , ARN de Planta/genética , ARN de Planta/metabolismo , Análisis de Secuencia de ADN , Análisis de Secuencia de ARN
12.
Cell Rep ; 20(5): 1061-1072, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28768192

RESUMEN

The epidermis is a highly regenerative barrier protecting organisms from environmental insults, including UV radiation, the main cause of skin cancer and skin aging. Here, we show that time-restricted feeding (RF) shifts the phase and alters the amplitude of the skin circadian clock and affects the expression of approximately 10% of the skin transcriptome. Furthermore, a large number of skin-expressed genes are acutely regulated by food intake. Although the circadian clock is required for daily rhythms in DNA synthesis in epidermal progenitor cells, RF-induced shifts in clock phase do not alter the phase of DNA synthesis. However, RF alters both diurnal sensitivity to UVB-induced DNA damage and expression of the key DNA repair gene, Xpa. Together, our findings indicate regulation of skin function by time of feeding and emphasize a link between circadian rhythm, food intake, and skin health.


Asunto(s)
Ritmo Circadiano/efectos de la radiación , Daño del ADN , Ingestión de Alimentos/efectos de la radiación , Piel/metabolismo , Rayos Ultravioleta/efectos adversos , Animales , Masculino , Ratones , Piel/patología
13.
Dev Cell ; 29(1): 59-74, 2014 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-24735879

RESUMEN

Epithelial cells possess remarkable plasticity, having the ability to become mesenchymal cells through alterations in adhesion and motility (epithelial-to-mesenchymal transition [EMT]). However, how epithelial plasticity is kept in check in epithelial cells during tissue development and regeneration remains to be fully understood. Here we show that restricting the EMT of mammary epithelial cells by transcription factor Ovol2 is required for proper morphogenesis and regeneration. Deletion of Ovol2 blocks mammary ductal morphogenesis, depletes stem and progenitor cell reservoirs, and leads epithelial cells to undergo EMT in vivo to become nonepithelial cell types. Ovol2 directly represses myriad EMT inducers, and its absence switches response to TGF-ß from growth arrest to EMT. Furthermore, forced expression of the repressor isoform of Ovol2 is able to reprogram metastatic breast cancer cells from a mesenchymal to an epithelial state. Our findings underscore the critical importance of exquisitely regulating epithelial plasticity in development and cancer.


Asunto(s)
Transición Epitelial-Mesenquimal , Glándulas Mamarias Animales/crecimiento & desarrollo , Morfogénesis , Regeneración , Factores de Transcripción/metabolismo , Animales , Reprogramación Celular , Inducción Embrionaria , Femenino , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Humanos , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/metabolismo , Ratones , Factores de Transcripción/genética , Factor de Crecimiento Transformador beta/metabolismo
14.
PLoS One ; 9(3): e92317, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24651522

RESUMEN

BACKGROUND: Deregulation of canonical Wnt/CTNNB1 (beta-catenin) pathway is one of the earliest events in the pathogenesis of colon cancer. Mutations in APC or CTNNB1 are highly frequent in colon cancer and cause aberrant stabilization of CTNNB1, which activates the transcription of Wnt target genes by binding to chromatin via the TCF/LEF transcription factors. Here we report an integrative analysis of genome-wide chromatin occupancy of CTNNB1 by chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) and gene expression profiling by microarray analysis upon RNAi-mediated knockdown of CTNNB1 in colon cancer cells. RESULTS: We observed 3629 CTNNB1 binding peaks across the genome and a significant correlation between CTNNB1 binding and knockdown-induced gene expression change. Our integrative analysis led to the discovery of a direct Wnt target signature composed of 162 genes. Gene ontology analysis of this signature revealed a significant enrichment of Wnt pathway genes, suggesting multiple feedback regulations of the pathway. We provide evidence that this gene signature partially overlaps with the Lgr5+ intestinal stem cell signature, and is significantly enriched in normal intestinal stem cells as well as in clinical colorectal cancer samples. Interestingly, while the expression of the CTNNB1 target gene set does not correlate with survival, elevated expression of negative feedback regulators within the signature predicts better prognosis. CONCLUSION: Our data provide a genome-wide view of chromatin occupancy and gene regulation of Wnt/CTNNB1 signaling in colon cancer cells.


Asunto(s)
Inmunoprecipitación de Cromatina , Neoplasias del Colon/genética , Perfilación de la Expresión Génica , Intestinos/patología , Análisis de Secuencia por Matrices de Oligonucleótidos , Células Madre/metabolismo , beta Catenina/metabolismo , Línea Celular Tumoral , Supervivencia Celular , Cromatina/metabolismo , Retroalimentación Fisiológica , Regulación Neoplásica de la Expresión Génica , Ontología de Genes , Humanos , Estimación de Kaplan-Meier , Reproducibilidad de los Resultados , Programas Informáticos , Células Madre/patología , Vía de Señalización Wnt/genética
15.
Methods Mol Biol ; 763: 51-71, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21874443

RESUMEN

The mammalian epidermis is a self-renewing stratified squamous epithelium. Its basal cell layer contains proliferating keratinocytes that exit the cell cycle when they move into the suprabasal compartment. These cells activate a gene differentiation program aimed at building a protective epidermal barrier as they move toward the surface, successively going through the spinous and granular layers. At the completion of this process, the keratinocytes become enucleated and form the cornified layer, the surface layer of the skin. The highly cross-linked protein-lipid envelope and extracellular lipids in the cornified layer along with cell-cell adhesions in the granular layer are required for an effective epidermal barrier. Transcriptional mechanisms are critical for the formation of the epidermal barrier, and in this chapter, we describe methods to evaluate the role of a transcription factor (TF) in epidermal differentiation. To identify direct target genes of a TF, we propose a combination of bioinformatics and experimental approaches. The ultimate goal of these approaches is to understand the mechanisms whereby a TF regulates epidermal barrier formation.


Asunto(s)
Diferenciación Celular/genética , Epidermis/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Queratinocitos/metabolismo , Factores de Transcripción/genética , Transcripción Genética , Análisis de Varianza , Animales , Sitios de Unión , Adhesión Celular/genética , Proliferación Celular , Inmunoprecipitación de Cromatina , Biología Computacional , Ensayo de Cambio de Movilidad Electroforética , Células Epidérmicas , Genes Reporteros , Queratinocitos/citología , Luciferasas/análisis , Ratones , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos , Unión Proteica , Programas Informáticos , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA