Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Angew Chem Int Ed Engl ; : e202407430, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884885

RESUMEN

The Cu-glutathione (GSH) redox system, essential in biology, is designed here as a supramacromolecular assembly in which the tetrahedral 18e Cu(I) center loses a thiol ligand upon adsorption onto ZIF-8, as shown by EXAFS and DFT calculation, to generate a very robust 16e planar trigonal single-atom Cu(I) catalyst. Synergy between Cu(I) and ZIF-8, revealed by catalytic experiments and DFT, affords CO2 conversion into high-value-added chemicals with a wide scope of substrates by reaction with terminal alkynes or propargyl amines in excellent yields under mild conditions and reuse at least 10 times without significant decrease in catalytic efficiency.

2.
Inorg Chem ; 59(24): 18402-18406, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33284611

RESUMEN

Resistance switching properties of nanoscale junctions of spin crossover molecules have received recently much interest. In many cases, this property has been traced back to the variation of molecular orbital energies upon spin transition. However, one can also expect a substantial reorganization of the molecular structure due to charge localization, which calls for a better understanding of the relationship between the redox potential and the spin state of the molecule. To investigate this issue, we carried out a detailed density functional theory and variable temperature cyclic voltammetry investigation of the benchmark compound [Fe(HB(1,2,4-triazol-1-yl)3)2] in solution. We show that, for a correct thermodynamical picture, it is necessary to take into account the charge transfer-induced electronic and structural reorganization as well as spin equilibria in the oxidized and reduced species.

3.
Small ; 15(47): e1903892, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31617319

RESUMEN

Thin films of the molecular spin-crossover complex [Fe(HB(1,2,4-triazol-1-yl)3 )2 ] undergo spin transition above room temperature, which can be exploited in sensors, actuators, and information processing devices. Variable temperature viscoelastic mapping of the films by atomic force microscopy reveals a pronounced decrease of the elastic modulus when going from the low spin (5.2 ± 0.4 GPa) to the high spin (3.6 ± 0.2 GPa) state, which is also accompanied by increasing energy dissipation. This technique allows imaging, with high spatial resolution, of the formation of high spin puddles around film defects, which is ascribed to local strain relaxation. On the other hand, no clustering process due to cooperative phenomena was observed. This experimental approach sets the stage for the investigation of spin transition at the nanoscale, including phase nucleation and evolution as well as local strain effects.

4.
J Am Chem Soc ; 140(31): 10034-10042, 2018 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-29996053

RESUMEN

Ammonia borane hydrolysis is considered as a potential means of safe and fast method of H2 production if it is efficiently catalyzed. Here a series of nearly monodispersed alloyed bimetallic nanoparticle catalysts are introduced, optimized among transition metals, and found to be extremely efficient and highly selective with sharp positive synergy between 2/3 Ni and 1/3 Pt embedded inside a zeolitic imidazolate framework (ZIF-8) support. These catalysts are much more efficient for H2 release than either Ni or Pt analogues alone on this support, and for instance the best catalyst Ni2Pt@ZiF-8 achieves a TOF of 600 molH2·molcatal-1·min-1 and 2222 molH2·molPt-1·min-1 under ambient conditions, which overtakes performances of previous Pt-base catalysts. The presence of NaOH boosts H2 evolution that becomes 87 times faster than in its absence with Ni2Pt@ZiF-8, whereas NaOH decreases H2 evolution on the related Pt@ZiF-8 catalyst. The ZIF-8 support appears outstanding and much more efficient than other supports including graphene oxide, active carbon and SBA-15 with these nanoparticles. Mechanistic studies especially involving kinetic isotope effects using D2O show that cleavage by oxidative addition of an O-H bond of water onto the catalyst surface is the rate-determining step of this reaction. The remarkable catalyst activity of Ni2Pt@ZiF-8 has been exploited for successful tandem catalytic hydrogenation reactions using ammonia borane as H2 source. In conclusion the selective and remarkable synergy disclosed here together with the mechanistic results should allow significant progress in catalyst design toward convenient H2 generation from hydrogen-rich substrates in the close future.

5.
J Am Chem Soc ; 140(28): 8970-8979, 2018 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-29920196

RESUMEN

Molecular spin crossover complexes are promising candidates for mechanical actuation purposes. The relationships between their crystal structure and mechanical properties remain, however, not well understood. In this study, combining high pressure synchrotron X-ray diffraction, nuclear inelastic scattering, and micromechanical measurements, we assessed the effective macroscopic bulk modulus ( B = 11.5 ± 1.5 GPa), Young's modulus ( Y = 10.9 ± 1.0 GPa), and Poisson's ratio (ν = 0.34 ± 0.04) of the spin crossover complex [FeII(HB(tz)3)2] (tz = 1,2,4-triazol-1-yl). Crystal structure analysis revealed a pronounced anisotropy of the lattice compressibility, which was correlated with the difference in spacing between the molecules as well as by the distribution of the stiffest C-H···N interactions in different crystallographic directions. Switching the molecules from the low spin to the high spin state leads to a remarkable drop of the Young's modulus to 7.1 ± 0.5 GPa both in bulk and thin film samples. The results highlight the application potential of these films in terms of strain (ε = -0.17 ± 0.05%), recoverable stress (σ = -21 ± 1 MPa), and work density ( W/V = 15 ± 6 mJ/cm3).

6.
Chemistry ; 24(48): 12686-12694, 2018 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-29863753

RESUMEN

Click ferrocenyl-terminal dentromers, a family of arene-cored dendrimers with triple branching (9-Fc, 27-Fc, 81-Fc, and 243-Fc), reduce AuIII to ferricinium dentromer-stabilized Au nanoparticles (AuNPs). Cyclic voltammetry studies in CH2 Cl2 show reversible CV waves with some adsorption for the 243-Fc dentromer and the number of redox groups found, 255±25, by using the Bard-Anson method, is close to the theoretical number of 243. The dentromers reduce aqueous HAuCl4 to water-soluble ferricinium chloride dentromer-stabilized AuNPs with core sizes between 30 and 47 nm. These triazolylferricinium dentromer-stabilized AuNPs are reduced by cobaltocene to cobalticinium chloride and ferrocene dentromer weakly stabilized AuNPs together with a redshift of the AuNP plasmon. The weakness of the AuNP stabilization is characterized by dentromer extraction with CH2 Cl2 along with irreversible AuNP agglomeration for the 9, 27, and 81-ferrocenyl dentromer, with only the 243-ferrocenyl dentromer-AuNP withstanding this process. Altogether, this demonstrates the electronic switching of the dentromer-mediated AuNP stabilization.

7.
Phys Chem Chem Phys ; 20(14): 9139-9145, 2018 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-29577144

RESUMEN

Using optical microscopy we studied the vacuum pressure dependence (0.1-1000 mbar) of the nucleation and growth dynamics of the thermally induced first-order spin transition in a single crystal of the spin-crossover compound [Fe(HB(tz)3)2] (tz = 1,2,4-triazol-1-yl). A crossover between a quasi-static hysteresis regime and a temperature-scan-rate-dependent kinetic regime is evidenced around 5 mbar due to the change of the heat exchange coupling between the crystal and its external environment. Remarkably, the absorption/dissipation rate of latent heat was identified as the key factor limiting the switching speed of the crystal.

8.
J Am Chem Soc ; 139(33): 11610-11615, 2017 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-28763209

RESUMEN

Non-noble metal nanoparticles are notoriously difficult to prepare and stabilize with appropriate dispersion, which in turn severely limits their catalytic functions. Here, using zeolitic imidazolate framework (ZIF-8) as MOF template, catalytically remarkably efficient ligand-free first-row late transition-metal nanoparticles are prepared and compared. Upon scrutiny of the catalytic principles in the hydrolysis of ammonia-borane, the highest total turnover frequency among these first-row late transition metals is achieved for the templated Ni nanoparticles with 85.7 molH2 molcat-1 min-1 at room temperature, which overtakes performances of previous non-noble metal nanoparticles systems, and is even better than some noble metal nanoparticles systems. Mechanistic studies especially using kinetic isotope effects show that cleavage by oxidative addition of an O-H bond in H2O is the rate-determining step in this reaction. Inspired by these mechanistic studies, an attractive and effective "on-off" control of hydrogen production is further proposed.

9.
Angew Chem Int Ed Engl ; 56(28): 8074-8078, 2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28488415

RESUMEN

We report on a bistable MEMS device actuated by spin-crossover molecules. The device consists of a freestanding silicon microcantilever with an integrated piezoresistive detection system, which was coated with a 140 nm thick film of the [Fe(HB(tz)3 )2 ] (tz=1,2,4-triazol-1-yl) molecular spin-crossover complex. Switching from the low-spin to the high-spin state of the ferrous ions at 338 K led to a reversible upward bending of the cantilever in agreement with the change in the lattice parameters of the complex. The strong mechanical coupling was also evidenced by the decrease of approximately 66 Hz in the resonance frequency in the high-spin state as well as by the drop in the quality factor around the spin transition.

10.
Small ; 12(46): 6325-6331, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27690273

RESUMEN

The working principle of a new kind of nanothermometer is experimentally demonstrated using bistable materials with thermal memory. This thermometry approach allows for acquiring sub-wavelength resolution images of fast, transient heating events.

11.
Inorg Chem ; 55(13): 6776-80, 2016 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-27304517

RESUMEN

Mono-, bis-, and tris-1,2,3-triazole ligands are used for the stabilization of gold nanoparticles (AuNPs), and the catalytic activities of these AuNPs in 4-nitrophenol reduction by NaBH4 in water are compared as well as with polyethylene glycol 2000 (PEG)- and polyvinylpyrrolidone (PVP)-stabilized AuNPs. The excellent catalytic results specifically obtained with the tris-triazolate ligand terminated by a PEG tail are taken into account by the synergy between the weakness of the tris-triazole-AuNP bond combined with the stabilizing ligand bulk.

12.
Angew Chem Int Ed Engl ; 55(9): 3091-5, 2016 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-26822288

RESUMEN

A ligand design is proposed for transition metal nanoparticle (TMNP) catalysts in aqueous solution. Thus, a tris(triazolyl)-polyethylene glycol (tris-trz-PEG) amphiphilic ligand, 2, is used for the synthesis of very small TMNPs with Fe, Co, Ni, Cu, Ru, Pd, Ag, Pt, and Au. These TMNP-2 catalysts were evaluated and compared for the model 4-nitrophenol reduction, and proved to be extremely efficient. High catalytic efficiencies involving the use of only a few ppm metal of PdNPs, RuNPs, and CuNPs were also exemplified in Suzuki-Miyaura, transfer hydrogenation, and click reactions, respectively.

13.
Chemistry ; 21(4): 1508-19, 2015 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-25428118

RESUMEN

The engineering of novel catalytic nanomaterials that are highly active for crucial carbon-carbon bond formations, easily recoverable many times, and biocompatible is highly desirable in terms of sustainable and green chemistry. To this end, catalysts comprising dendritic "click" ligands that are immobilized on a magnetic nanoparticle (MNP) core, terminated by triethylene glycol (TEG) groups, and incorporate Pd nanoparticles (PdNPs) have been prepared. These nanomaterials are characterized by transmission electron microscopy (TEM), high-resolution TEM, inductively coupled plasma analysis, Fourier transform infrared spectroscopy, X-ray photoelectron spectra and energy-dispersive X-ray spectroscopy. They are shown to be highly active, dispersible, and magnetically recoverable many times in Suzuki, Sonogashira, and Heck reactions. In addition, a series of pharmacologically relevant or natural products were successfully synthesized using these magnetic PdNPs as catalyst. For comparison, related PdNP catalysts deposited on MNPs bearing linear "click" PEGylated ligands are also prepared. Strong positive dendritic effects concerning ligand loading, catalyst loading, catalytic activity, and recyclability are observed, that is, the dendritic catalysts are much more efficient than non-dendritic analogues.

14.
Chemistry ; 21(17): 6501-10, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25754469

RESUMEN

High efficiency and selectivity, easy magnetic recovery and recycling, and use of air as the oxidant at atmospheric pressure are major objectives for oxidation catalysis in terms of sustainable and green processes. A tris(triazolyl) ligand, so far only used in copper-catalyzed alkyne azide cycloadditions, was found to be extremely efficient in SiO2 /γ-Fe2 O3 -immobilized palladium complexes. It was characterized by inductively coupled plasma (ICP) analysis, transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectra (XPS) and found to fulfill the combined conditions for the selective oxidation of alcohols to aldehydes and ketones.

15.
Chemistry ; 21(50): 18177-86, 2015 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-26494439

RESUMEN

We report the first pentamethylferrocene (PMF) polymers and the redox chemistry of their robust polycationic pentamethylferricenium (PMFium) analogues. The PMF polymers were synthesized by ring-opening metathesis polymerization (ROMP) of a PMF-containing norbornene derivative by using the third-generation Grubbs ruthenium metathesis catalyst. Cyclic voltammetry studies allowed us to determine confidently the number of monomer units in the polymers through the Bard-Anson method. Stoichiometric oxidation by using ferricenium hexafluorophosphate quantitatively and instantaneously provided fully stable (even in aerobic solutions) blue d(5) Fe(III) metallopolymers. Alternatively, oxidation of the PMF-containing polymers was conducted by reactions with Ag(I) or Au(III) , to give PMFium polymer-embedded Ag and Au nanoparticles (NPs). In the presence of I2 , oxidation by using Ag(I) gave polymer-embedded Ag/AgI NPs and AgNPs at the surface of AgI NPs. Oxidation by using Au(III) also produced an Au(I) intermediate that was trapped and characterized. Engineered single-electron transfer reactions of these redox-robust nanomaterial precursors appear to be a new way to control their formation, size, and environment in a supramolecular way.

16.
Inorg Chem ; 54(5): 2284-99, 2015 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-25676664

RESUMEN

The design of redox-robust polymers is called for in view of interactions with nanoparticles and surfaces toward applications in nanonetwork design, sensing, and catalysis. Redox-robust triazolylbiferrocenyl (trzBiFc) polymers have been synthesized with the organometallic group in the side chain by ring-opening metathesis polymerization using Grubbs-III catalyst or radical polymerization and with the organometallic group in the main chain by Cu(I) azide alkyne cycloaddition (CuAAC) catalyzed by [Cu(I)(hexabenzyltren)]Br. Oxidation of the trzBiFc polymers with ferricenium hexafluorophosphate yields the stable 35-electron class-II mixed-valent biferrocenium polymer. Oxidation of these polymers with Au(III) or Ag(I) gives nanosnake-shaped networks (observed by transmission electron microscopy and atomic force microscopy) of this mixed-valent Fe(II)Fe(III) polymer with encapsulated metal nanoparticles (NPs) when the organoiron group is located on the side chain. The factors that are suggested to be synergistically responsible for the NP stabilization and network formation are the polymer bulk, the trz coordination, the nearby cationic charge of trzBiFc, and the inter-BiFc distance. For instance, reduction of such an oxidized trzBiFc-AuNP polymer to the neutral trzBiFc-AuNP polymer with NaBH4 destroys the network, and the product flocculates. The polymers easily provide modified electrodes that sense, via the oxidized Fe(II)Fe(III) and Fe(III)Fe(III) polymer states, respectively, ATP(2-) via the outer ferrocenyl units of the polymer and Pd(II) via the inner Fc units; this recognition works well in dichloromethane, but also to a lesser extent in water with NaCl as the electrolyte.


Asunto(s)
Compuestos Ferrosos/química , Nanopartículas del Metal/química , Compuestos Organometálicos/química , Polímeros/química , Triazoles/química , Aniones/química , Química Clic , Oro/química , Metalocenos , Estructura Molecular , Compuestos Organometálicos/síntesis química , Oxidación-Reducción , Tamaño de la Partícula , Plata/química , Propiedades de Superficie
17.
Inorg Chem ; 54(11): 5145-7, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25955588

RESUMEN

A mononuclear iron(II) complex has been isolated in two polymorphs. Polymorph 1b remains high-spin over all temperatures, whereas polymorph 1a undergoes a cooperative two-step spin crossover accompanied by symmetry breaking, showing an ordered 2:1 high-spin-low-spin intermediate phase.

18.
Phys Chem Chem Phys ; 17(7): 5151-4, 2015 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-25601493

RESUMEN

We studied the effect of light irradiation on the electrical conductance of micro-rods of the spin crossover [Fe(Htrz)2(trz)](BF4) network, organized between interdigitated gold electrodes. By irradiating the sample with different wavelengths (between 295 and 655 nm) either in air or under a nitrogen atmosphere we observed both a reversible and an irreversible change of the current flowing in the device. The reversible process consists of an abrupt decrease of the current intensity (ca. 10-50%) upon light irradiation, while the irreversible process is characterized by a slow, but continuous increase in time of the current, which persists also in the dark. These photo-induced processes were only detected in the high conductance low-spin (LS) state of the complex. On switching the rods to the high spin (HS) state the conductance decreases two orders of magnitude (at the same temperature) and - as a consequence - the photo-effect vanishes.

19.
J Am Chem Soc ; 136(40): 13995-8, 2014 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-25253420

RESUMEN

Polymers containing triazolylbiferrocene are synthesized by ROMP or radical chain reactions and react with HAuCl4 to provide class-2 mixed-valent triazolylbiferrocenium polyelectrolyte networks (observed inter alia by TEM and AFM) that encapsulate gold nanoparticles (AuNPs). With triazolylbiferrocenium in the side polymer chain, the intertwined polymer networks form nanosnakes, unlike with triazolylbiferrocenium in the main polymer chain. By contrast, simple ferrocene-containing polymers do not form such a ferricenium network upon reaction with Au(III), but only small AuNPs, showing that the triazolyl ligand, the cationic charge, and the biferrocenium structure are coresponsible for such network formations.

20.
Chemistry ; 20(27): 8363-9, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24891131

RESUMEN

A large family of bifunctional 1,2,3-triazole derivatives that contain both a polyethylene glycol (PEG) chain and another functional fragment (e.g., a polymer, dendron, alcohol, carboxylic acid, allyl, fluorescence dye, redox-robust metal complex, or a ß-cyclodextrin unit) has been synthesized by facile "click" chemistry and mildly coordinated to nanogold particles, thus providing stable water-soluble gold nanoparticles (AuNPs) in the size range 3.0-11.2 nm with various properties and applications. In particular, the sensing properties of these AuNPs are illustrated through the detection of an analogue of a warfare agent (i.e., sulfur mustard) by means of a fluorescence "turn-on" assay, and the catalytic activity of the smallest triazole-AuNPs (core of 3.0 nm) is excellent for the reduction of 4-nitrophenol in water.


Asunto(s)
Oro/química , Catálisis , Sustancias para la Guerra Química/análisis , Química Clic , Nanopartículas del Metal/química , Gas Mostaza/análisis , Nitrofenoles/química , Oxidación-Reducción , Tamaño de la Partícula , Polietilenglicoles/química , Espectrometría de Fluorescencia , Triazoles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA