Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 41(23): e110595, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36305367

RESUMEN

Mammalian SWI/SNF/BAF chromatin remodeling complexes influence cell lineage determination. While the contribution of these complexes to neural progenitor cell (NPC) proliferation and differentiation has been reported, little is known about the transcriptional profiles that determine neurogenesis or gliogenesis. Here, we report that BCL7A is a modulator of the SWI/SNF/BAF complex that stimulates the genome-wide occupancy of the ATPase subunit BRG1. We demonstrate that BCL7A is dispensable for SWI/SNF/BAF complex integrity, whereas it is essential to regulate Notch/Wnt pathway signaling and mitochondrial bioenergetics in differentiating NPCs. Pharmacological stimulation of Wnt signaling restores mitochondrial respiration and attenuates the defective neurogenic patterns observed in NPCs lacking BCL7A. Consistently, treatment with an enhancer of mitochondrial biogenesis, pioglitazone, partially restores mitochondrial respiration and stimulates neuronal differentiation of BCL7A-deficient NPCs. Using conditional BCL7A knockout mice, we reveal that BCL7A expression in NPCs and postmitotic neurons is required for neuronal plasticity and supports behavioral and cognitive performance. Together, our findings define the specific contribution of BCL7A-containing SWI/SNF/BAF complexes to mitochondria-driven NPC commitment, thereby providing a better understanding of the cell-intrinsic transcriptional processes that connect metabolism, neuronal morphogenesis, and cognitive flexibility.


Asunto(s)
Diferenciación Celular , Proteínas de Microfilamentos , Células-Madre Neurales , Animales , Ratones , Adenosina Trifosfatasas/metabolismo , Ensamble y Desensamble de Cromatina , Metabolismo Energético , Mitocondrias/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Microfilamentos/metabolismo , Células-Madre Neurales/citología
2.
Proc Natl Acad Sci U S A ; 116(14): 6975-6984, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30877245

RESUMEN

Genomic instability (GI) drives tumor heterogeneity and promotes tumor progression and therapy resistance. However, causative factors underlying GI and means for clinical detection of GI in glioma are inadequately identified. We describe here that elevated expression of a gene module coexpressed with CDC20 (CDC20-M), the activator of the anaphase-promoting complex in the cell cycle, marks GI in glioma. The CDC20-M, containing 139 members involved in cell proliferation, DNA damage response, and chromosome segregation, was found to be consistently coexpressed in glioma transcriptomes. The coexpression of these genes was conserved across multiple species and organ systems, particularly in human neural stem and progenitor cells. CDC20-M expression was not correlated with the morphological subtypes, nor with the recently defined molecular subtypes of glioma. CDC20-M signature was an independent and robust predictor for poorer prognosis in over 1,000 patients from four large databases. Elevated CDC20-M signature enabled the identification of individual glioma samples with severe chromosome instability and mutation burden and of primary glioma cell lines with extensive mitotic errors leading to chromosome mis-segregation. AURKA, a core member of CDC20-M, was amplified in one-third of CDC20-M-high gliomas with gene-dosage-dependent expression. MLN8237, a Food and Drug Administration-approved AURKA inhibitor, selectively killed temozolomide-resistant primary glioma cells in vitro and prolonged the survival of a patient-derived xenograft mouse model with a high-CDC20-M signature. Our findings suggest that application of the CDC20-M signature may permit more selective use of adjuvant therapies for glioma patients and that dysregulated CDC20-M members may provide a therapeutic vulnerability in glioma.


Asunto(s)
Biomarcadores de Tumor/biosíntesis , Proteínas Cdc20/biosíntesis , Regulación Neoplásica de la Expresión Génica , Inestabilidad Genómica , Glioma/metabolismo , Proteínas de Neoplasias/biosíntesis , Animales , Biomarcadores de Tumor/genética , Proteínas Cdc20/genética , Quimioterapia Adyuvante , Femenino , Perfilación de la Expresión Génica , Glioma/tratamiento farmacológico , Glioma/genética , Glioma/patología , Humanos , Masculino , Ratones , Ratones Desnudos , Proteínas de Neoplasias/genética , Temozolomida/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Blood ; 131(6): 636-648, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29191918

RESUMEN

A hallmark of acute promyelocytic leukemia (APL) is altered nuclear architecture, with disruption of promyelocytic leukemia (PML) nuclear bodies (NBs) mediated by the PML-retinoic acid receptor α (RARα) oncoprotein. To address whether this phenomenon plays a role in disease pathogenesis, we generated a knock-in mouse model with NB disruption mediated by 2 point mutations (C62A/C65A) in the Pml RING domain. Although no leukemias developed in PmlC62A/C65A mice, these transgenic mice also expressing RARα linked to a dimerization domain (p50-RARα model) exhibited a doubling in the rate of leukemia, with a reduced latency period. Additionally, we found that response to targeted therapy with all-trans retinoic acid in vivo was dependent on NB integrity. PML-RARα is recognized to be insufficient for development of APL, requiring acquisition of cooperating mutations. We therefore investigated whether NB disruption might be mutagenic. Compared with wild-type cells, primary PmlC62A/C65A cells exhibited increased sister-chromatid exchange and chromosome abnormalities. Moreover, functional assays showed impaired homologous recombination (HR) and nonhomologous end-joining (NHEJ) repair pathways, with defective localization of Brca1 and Rad51 to sites of DNA damage. These data directly demonstrate that Pml NBs are critical for DNA damage responses, and suggest that Pml NB disruption is a central contributor to APL pathogenesis.


Asunto(s)
Reparación del ADN/genética , Cuerpos de Inclusión Intranucleares/metabolismo , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/patología , Proteína de la Leucemia Promielocítica/fisiología , Animales , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Daño del ADN/genética , Reparación del ADN por Unión de Extremidades/genética , Cuerpos de Inclusión Intranucleares/genética , Leucemia Promielocítica Aguda/metabolismo , Ratones , Ratones Transgénicos , Mutagénesis/genética , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Proteína de la Leucemia Promielocítica/genética , Transducción de Señal/genética
4.
Proc Natl Acad Sci U S A ; 112(4): 1059-64, 2015 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-25583481

RESUMEN

Alterations of mitochondrial metabolism and genomic instability have been implicated in tumorigenesis in multiple tissues. High-grade glioma (HGG), one of the most lethal human neoplasms, displays genetic modifications of Krebs cycle components as well as electron transport chain (ETC) alterations. Furthermore, the p53 tumor suppressor, which has emerged as a key regulator of mitochondrial respiration at the expense of glycolysis, is genetically inactivated in a large proportion of HGG cases. Therefore, it is becoming evident that genetic modifications can affect cell metabolism in HGG; however, it is currently unclear whether mitochondrial metabolism alterations could vice versa promote genomic instability as a mechanism for neoplastic transformation. Here, we show that, in neural progenitor/stem cells (NPCs), which can act as HGG cell of origin, inhibition of mitochondrial metabolism leads to p53 genetic inactivation. Impairment of respiration via inhibition of complex I or decreased mitochondrial DNA copy number leads to p53 genetic loss and a glycolytic switch. p53 genetic inactivation in ETC-impaired neural stem cells is caused by increased reactive oxygen species and associated oxidative DNA damage. ETC-impaired cells display a marked growth advantage in the presence or absence of oncogenic RAS, and form undifferentiated tumors when transplanted into the mouse brain. Finally, p53 mutations correlated with alterations in ETC subunit composition and activity in primary glioma-initiating neural stem cells. Together, these findings provide previously unidentified insights into the relationship between mitochondria, genomic stability, and tumor suppressive control, with implications for our understanding of brain cancer pathogenesis.


Asunto(s)
Neoplasias Encefálicas , Transformación Celular Neoplásica , Glioma , Células-Madre Neurales/metabolismo , Proteína p53 Supresora de Tumor , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Ciclo del Ácido Cítrico/genética , Daño del ADN , Proteínas del Complejo de Cadena de Transporte de Electrón/genética , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Glioma/genética , Glioma/metabolismo , Glioma/patología , Glucólisis/genética , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Mutación , Células-Madre Neurales/patología , Oxidación-Reducción , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
5.
BMC Cancer ; 15: 357, 2015 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-25939870

RESUMEN

BACKGROUND: ZFP36 is an mRNA binding protein that exerts anti-tumor activity in glioblastoma by triggering cell death, associated to an increase in the stability of the kinase RIP1. METHODS: We used cell death assays, size exclusion chromatography, Co-Immunoprecipitation, shRNA lentivectors and glioma neural stem cells to determine the effects of ZFP36 on the assembly of a death complex containing RIP1 and on the induction of necroptosis. RESULTS: Here we demonstrate that ZFP36 promotes the assembly of the death complex called Ripoptosome and induces RIP1-dependent death. This involves the depletion of the ubiquitine ligases cIAP2 and XIAP and leads to the association of RIP1 to caspase-8 and FADD. Moreover, we show that ZFP36 controls RIP1 levels in glioma neural stem cell lines. CONCLUSIONS: We provide a molecular mechanism for the tumor suppressor role of ZFP36, and the first evidence for Ripoptosome assembly following ZFP36 expression. These findings suggest that ZFP36 plays an important role in RIP1-dependent cell death in conditions where IAPs are depleted.


Asunto(s)
Proteínas Inhibidoras de la Apoptosis/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Tristetraprolina/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo , Apoptosis , Proteína 3 que Contiene Repeticiones IAP de Baculovirus , Línea Celular Tumoral , Estabilidad de Enzimas , Glioma/patología , Células HEK293 , Humanos , Células Madre Neoplásicas/metabolismo , Multimerización de Proteína , Proteolisis
6.
Cell Mol Life Sci ; 70(4): 581-97, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22802124

RESUMEN

The generation of specialized neural cells in the developing and postnatal central nervous system is a highly regulated process, whereby neural stem cells divide to generate committed neuronal progenitors, which then withdraw from the cell cycle and start to differentiate. Cell cycle checkpoints play a major role in regulating the balance between neural stem cell expansion and differentiation. Loss of tumor suppressors involved in checkpoint control can lead to dramatic alterations of neurogenesis, thus contributing to neoplastic transformation. Here we summarize and critically discuss the existing literature on the role of tumor suppressive pathways and their regulatory networks in the control of neurogenesis and transformation.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Células-Madre Neurales/citología , Neurogénesis , Proteínas del Grupo Polycomb/metabolismo , Proteína de Retinoblastoma/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Puntos de Control del Ciclo Celular , Proteínas de Ciclo Celular/genética , Regulación del Desarrollo de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Células-Madre Neurales/metabolismo , Proteínas del Grupo Polycomb/genética , Proteína de Retinoblastoma/genética , Transducción de Señal , Proteína p53 Supresora de Tumor/genética
7.
Magn Reson Med ; 70(5): 1380-8, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23213043

RESUMEN

PURPOSE: Worldwide efforts to understand developmental processes demand new high-resolution 3D imaging methods to detect the consequences of gene function in embryo development and diseases. Encouragingly, recent studies have shown that MRI contrast agents can highlight specific tissue structures in ex vivo adult mouse brains. MR imaging of mouse embryos is currently limited by a lack of tissue staining capabilities that would provide the flexibility and specificity offered by histological stains conventionally used for mouse embryo phenotyping. METHODS: The MRI staining properties of two readily available contrast agents, Mn-DPDP and Gd-DTPA, were investigated in mid-gestation mouse embryos. RESULTS: Brain tissue substructures not normally visible using MRI were detected. Mn-DPDP and Gd-DTPA provided spatially distinct tissue staining patterns. An initial assessment indicated that these agents utilized independent contrast enhancement mechanisms. Mn-DPDP was identified as a potential MRI contrast agent for enhancement of mouse embryonic cellular density and enabled identification of regions containing populations of neural stem and progenitor cells within the intact embryo brain. CONCLUSIONS: Different contrast agents may be used to provide tissue-specific contrast enhancement, suggesting that a host of specialized MRI stains may be available for probing the developing mouse brain and investigating developmental and disease mechanisms.


Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/embriología , Ácido Edético/análogos & derivados , Gadolinio DTPA , Aumento de la Imagen/métodos , Imagen por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/veterinaria , Fosfato de Piridoxal/análogos & derivados , Animales , Medios de Contraste , Diagnóstico Diferencial , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
8.
Cancer Discov ; 13(12): 2505-2506, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-38084094

RESUMEN

SUMMARY: The study by Bercier and colleagues investigates the mechanisms of action of arsenic trioxide (ATO). The authors find that ATO promotes transition of PML nuclear bodies to a gel-like state via the PML trimerization domain and a critical cysteine residue. Overall, this work sheds new light onto how PML-RARα, the oncogene of APL, is targeted by ATO for disease eradication. See related article by Bercier et al., p. 2548 (6).


Asunto(s)
Antineoplásicos , Arsenicales , Leucemia Promielocítica Aguda , Humanos , Trióxido de Arsénico/farmacología , Trióxido de Arsénico/uso terapéutico , Arsenicales/farmacología , Arsenicales/uso terapéutico , Óxidos/farmacología , Óxidos/uso terapéutico , Leucemia Promielocítica Aguda/tratamiento farmacológico , Proteínas de Fusión Oncogénica/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
9.
Cell Death Differ ; 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37828086

RESUMEN

Identification of mutations in histones in a number of human neoplasms and developmental syndromes represents the most compelling evidence to date for a causal role of epigenetic perturbations in human disease. In most cases, these mutations have gain of function properties that cause deviation from normal developmental processes leading to embryo defects and/or neoplastic transformation. These exciting discoveries represent a step-change in our understanding of the role of chromatin (dys)regulation in development and disease. However, the mechanisms of action of oncogenic histone mutations (oncohistones) remain only partially understood. Here, we critically assess existing literature on oncohistones focussing mainly on bone neoplasms. We show how it is possible to draw parallels with some of the cell-autonomous mechanisms of action described in paediatric brain cancer, although the functions of oncohistones in bone tumours remain under-investigated. In this respect, it is becoming clear that histone mutations targeting the same residues display, at least in part, tissue-specific oncogenic mechanisms. Furthermore, it is emerging that cancer cells carrying oncohistones can modify the surrounding microenvironment to support growth and/or alter differentiation trajectories. A better understanding of oncohistone function in different neoplasms provide potential for identification of signalling that could be targeted therapeutically. Finally, we discuss some of the main concepts and future directions in this research area, while also drawing possible connections and parallels with other cancer epigenetic mechanisms.

10.
Hum Mol Genet ; 19(2): 342-51, 2010 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-19892780

RESUMEN

Mutations in the gene encoding FERM domain-containing 7 protein (FRMD7) are recognized as an important cause of X-linked idiopathic infantile nystagmus (IIN). However, the precise role of FRMD7 and its involvement in the pathogenesis of IIN are not understood. In the present study, we have explored the role of FRMD7 in neuronal development. Using in situ hybridization and immunohistochemistry, we reveal that FRMD7 expression is spatially and temporally regulated in both the human and mouse brain during embryonic and fetal development. Furthermore, we show that FRMD7 expression is up-regulated upon retinoic acid (RA)-induced differentiation of mouse neuroblastoma NEURO2A cells, suggesting FRMD7 may play a role in this process. Indeed, we demonstrate, for the first time, that knockdown of FRMD7 during neuronal differentiation results in altered neurite development. Taken together, our data suggest that FRMD7 is involved in multiple aspects of neuronal development, and have direct importance to further understanding the pathogenesis of IIN.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Proteínas del Citoesqueleto/genética , Proteínas de la Membrana/genética , Neuronas/citología , Nistagmo Congénito/metabolismo , Animales , Encéfalo/citología , Encéfalo/embriología , Encéfalo/metabolismo , Diferenciación Celular , Línea Celular Tumoral , Células Cultivadas , Proteínas del Citoesqueleto/metabolismo , Modelos Animales de Enfermedad , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica , Humanos , Proteínas de la Membrana/metabolismo , Ratones , Neuronas/metabolismo , Nistagmo Congénito/genética
11.
Hum Mol Genet ; 19(9): 1669-77, 2010 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-20123860

RESUMEN

Mutations of thymidine kinase 2 (TK2), an essential component of the mitochondrial nucleotide salvage pathway, can give rise to mitochondrial DNA (mtDNA) depletion syndromes (MDS). These clinically heterogeneous disorders are characterized by severe reduction in mtDNA copy number in affected tissues and are associated with progressive myopathy, hepatopathy and/or encephalopathy, depending in part on the underlying nuclear genetic defect. Mutations of TK2 have previously been associated with an isolated myopathic form of MDS (OMIM 609560). However, more recently, neurological phenotypes have been demonstrated in patients carrying TK2 mutations, thus suggesting that loss of TK2 results in neuronal dysfunction. Here, we directly address the role of TK2 in neuronal homeostasis using a knockout mouse model. We demonstrate that in vivo loss of TK2 activity leads to a severe ataxic phenotype, accompanied by reduced mtDNA copy number and decreased steady-state levels of electron transport chain proteins in the brain. In TK2-deficient cerebellar neurons, these abnormalities are associated with impaired mitochondrial bioenergetic function, aberrant mitochondrial ultrastructure and degeneration of selected neuronal types. Overall, our findings demonstrate that TK2 deficiency leads to neuronal dysfunction in vivo, and have important implications for understanding the mechanisms of neurological impairment in MDS.


Asunto(s)
Enfermedades Mitocondriales/genética , Neuronas/citología , Neuronas/metabolismo , Timidina Quinasa/deficiencia , Análisis de Varianza , Animales , Ataxia/enzimología , Ataxia/etiología , Secuencia de Bases , Encéfalo/metabolismo , Variaciones en el Número de Copia de ADN , ADN Mitocondrial/genética , Metabolismo Energético , Vectores Genéticos , Immunoblotting , Inmunohistoquímica , Lentivirus , Ratones , Ratones Noqueados , Enfermedades Mitocondriales/complicaciones , Datos de Secuencia Molecular , Mutación/genética , Timidina Quinasa/genética
12.
Proc Natl Acad Sci U S A ; 106(12): 4725-30, 2009 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-19261859

RESUMEN

Nuclear domains of promyelocytic leukemia protein (PML) are known to act as signaling nodes in many cellular processes. Although the impact of PML expression in driving cell fate decisions for injured cells is well established, the function of PML in the context of tissue development is less well understood. Here, the in vivo role of PML in developmental processes in the murine mammary gland has been investigated. Data are presented showing that expression of PML is tightly regulated by three members of the Stat family of transcription factors that orchestrate the functional development of the mammary secretory epithelium during pregnancy. Developmental phenotypes were also discovered in the virgin and pregnant Pml null mouse, typified by aberrant differentiation of mammary epithelia with reduced ductal and alveolar development. PML depletion was also found to disturb the balance of two distinct luminal progenitor populations. Overall, it is shown that PML is required for cell lineage determination in bi-potent luminal progenitor cells and that the precise regulation of PML expression is required for functional differentiation of alveolar cells.


Asunto(s)
Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/crecimiento & desarrollo , Proteínas Nucleares/deficiencia , Células Madre/citología , Factores de Transcripción/deficiencia , Proteínas Supresoras de Tumor/deficiencia , Animales , Diferenciación Celular , Células Epiteliales/citología , Células Epiteliales/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Ratones , Morfogénesis , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína de la Leucemia Promielocítica , Factores de Transcripción STAT/metabolismo , Células Madre/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
13.
Neuro Oncol ; 24(5): 741-754, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-34865163

RESUMEN

BACKGROUND: Developmental brain tumors harboring BRAFV600E somatic mutation are diverse. Here, we describe molecular factors that determine BRAFV600E-induced tumor biology and function. METHODS: Intraventricular in utero electroporation in combination with the piggyBac transposon system was utilized to generate developmental brain neoplasms, which were comprehensively analyzed with regard to growth using near-infrared in-vivo imaging, transcript signatures by RNA sequencing, and neuronal activity by multielectrode arrays. RESULTS: BRAF  V600E expression in murine neural progenitors elicits benign neoplasms composed of enlarged dysmorphic neurons and neoplastic astroglia recapitulating ganglioglioma (GG) only in concert with active Akt/mTOR-signaling. Purely glial tumors resembling aspects of polymorphous low-grade neuroepithelial tumors of the young (PLNTYs) emerge from BRAFV600E alone. Additional somatic Trp53-loss is sufficient to generate anaplastic GGs (aGGs) with glioneuronal clonality. Functionally, only BRAFV600E/pAkt tumors intrinsically generate substantial neuronal activity and show enhanced relay to adjacent tissue conferring high epilepsy propensity. In contrast, PLNTY- and aGG models lack significant spike activity, which appears in line with the glial differentiation of the former and a dysfunctional tissue structure combined with reduced neuronal transcript signatures in the latter. CONCLUSION: mTOR-signaling and Trp53-loss critically determine the biological diversity and electrical activity of BRAFV600E-induced tumors.


Asunto(s)
Neoplasias Encefálicas , Ganglioglioma , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Ganglioglioma/genética , Humanos , Ratones , Mutación , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
14.
Cell Death Differ ; 29(12): 2459-2471, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36138226

RESUMEN

Oncohistones represent compelling evidence for a causative role of epigenetic perturbations in cancer. Giant cell tumours of bone (GCTs) are characterised by a mutated histone H3.3 as the sole genetic driver present in bone-forming osteoprogenitor cells but absent from abnormally large bone-resorbing osteoclasts which represent the hallmark of these neoplasms. While these striking features imply a pathogenic interaction between mesenchymal and myelomonocytic lineages during GCT development, the underlying mechanisms remain unknown. We show that the changes in the transcriptome and epigenome in the mesenchymal cells caused by the H3.3-G34W mutation contribute to increase osteoclast recruitment in part via reduced expression of the TGFß-like soluble factor, SCUBE3. Transcriptional changes in SCUBE3 are associated with altered histone marks and H3.3G34W enrichment at its enhancer regions. In turn, osteoclasts secrete unregulated amounts of SEMA4D which enhances proliferation of mutated osteoprogenitors arresting their maturation. These findings provide a mechanism by which GCTs undergo differentiation in response to denosumab, a drug that depletes the tumour of osteoclasts. In contrast, hTERT alterations, commonly found in malignant GCT, result in the histone-mutated neoplastic cells being independent of osteoclasts for their proliferation, predicting unresponsiveness to denosumab. We provide a mechanism for the initiation of GCT, the basis of which is dysfunctional cross-talk between bone-forming and bone-resorbing cells. The findings highlight the role of tumour/microenvironment bidirectional interactions in tumorigenesis and how this is exploited in the treatment of GCT.


Asunto(s)
Neoplasias Óseas , Tumor Óseo de Células Gigantes , Humanos , Tumor Óseo de Células Gigantes/genética , Tumor Óseo de Células Gigantes/tratamiento farmacológico , Tumor Óseo de Células Gigantes/patología , Histonas/genética , Histonas/metabolismo , Denosumab/metabolismo , Denosumab/uso terapéutico , Neoplasias Óseas/genética , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/metabolismo , Osteoclastos/metabolismo , Remodelación Ósea/genética , Microambiente Tumoral , Proteínas de Unión al Calcio/metabolismo
15.
Nat Commun ; 13(1): 6830, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36369285

RESUMEN

Current concepts regarding the biology of aging are primarily based on studies aimed at identifying factors regulating lifespan. However, lifespan as a sole proxy measure for aging can be of limited value because it may be restricted by specific pathologies. Here, we employ large-scale phenotyping to analyze hundreds of markers in aging male C57BL/6J mice. For each phenotype, we establish lifetime profiles to determine when age-dependent change is first detectable relative to the young adult baseline. We examine key lifespan regulators (putative anti-aging interventions; PAAIs) for a possible countering of aging. Importantly, unlike most previous studies, we include in our study design young treated groups of animals, subjected to PAAIs prior to the onset of detectable age-dependent phenotypic change. Many PAAI effects influence phenotypes long before the onset of detectable age-dependent change, but, importantly, do not alter the rate of phenotypic change. Hence, these PAAIs have limited effects on aging.


Asunto(s)
Envejecimiento , Longevidad , Ratones , Animales , Masculino , Longevidad/genética , Ratones Endogámicos C57BL , Envejecimiento/fisiología , Fenotipo
16.
Trends Cell Biol ; 16(2): 97-104, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16406523

RESUMEN

The death domain-associated protein (Daxx) was originally cloned as a CD95 (FAS)-interacting protein and modulator of FAS-induced cell death. Daxx accumulates in both the nucleus and the cytoplasm; in the nucleus, Daxx is found associated with the promyelocytic leukaemia (PML) nuclear body and with alpha-thalassemia/mental retardation syndrome protein (ATRX)-positive heterochromatic regions. In the cytoplasm, Daxx has been reported to interact with various proteins involved in cell death regulation. Despite a significant number of studies attempting to determine Daxx function in apoptotic and non-apoptotic cell death, its precise role in this process is only partially understood. Here, we critically review the current understanding of Daxx function and shed new light on this interesting field.


Asunto(s)
Apoptosis , Proteínas Portadoras/fisiología , Péptidos y Proteínas de Señalización Intracelular/fisiología , Proteínas Nucleares/fisiología , Proteínas Adaptadoras Transductoras de Señales , Animales , Núcleo Celular/química , Núcleo Celular/metabolismo , Proteínas Co-Represoras , Citoplasma/química , Citoplasma/metabolismo , Humanos , Ratones , Chaperonas Moleculares , Transducción de Señal/fisiología
17.
Curr Opin Pharmacol ; 60: 117-122, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34411982

RESUMEN

With the aging of the population, Alzheimer's disease and other forms of dementia represent major challenges for health care systems globally. To date, the molecular mechanisms underlying the pathophysiology of dementia remain elusive, with a consequent negative impact in developing efficient disease modifiers. New exciting findings suggest that modulation of the histone code may influence transcriptional networks at the root of neuronal plasticity and cognitive performance. Although most of the current conclusions require further mechanistic evidence, it appears that chromatin perturbations actually correlate with Alzheimer's disease onset and progression. Thus, a better understanding of the epigenetic contribution to normal brain function and dementia pathogenesis may help to identify new epigenetic targets for the inhibition of disease trajectories associated with cognitive decline.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Envejecimiento/genética , Enfermedad de Alzheimer/genética , Cromatina/genética , Código de Histonas , Humanos
18.
Cell Death Dis ; 12(8): 785, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34381018

RESUMEN

Pediatric gliomas comprise a broad range of brain tumors derived from glial cells. While high-grade gliomas are often resistant to therapy and associated with a poor outcome, children with low-grade gliomas face a better prognosis. However, the treatment of low-grade gliomas is often associated with severe long-term adverse effects. This shows that there is a strong need for improved treatment approaches. Here, we highlight the potential for repurposing disulfiram to treat pediatric gliomas. Disulfiram is a drug used to support the treatment of chronic alcoholism and was found to be effective against diverse cancer types in preclinical studies. Our results show that disulfiram efficiently kills pediatric glioma cell lines as well as patient-derived glioma stem cells. We propose a novel mechanism of action to explain disulfiram's anti-oncogenic activities by providing evidence that disulfiram induces the degradation of the oncoprotein MLL. Our results further reveal that disulfiram treatment and MLL downregulation induce similar responses at the level of histone modifications and gene expression, further strengthening that MLL is a key target of the drug and explaining its anti-oncogenic properties.


Asunto(s)
Alcoholismo/tratamiento farmacológico , Disulfiram/uso terapéutico , Glioma/tratamiento farmacológico , Glioma/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Proteolisis , Auranofina/farmacología , Auranofina/uso terapéutico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Niño , Disulfiram/farmacología , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Reposicionamiento de Medicamentos , Sinergismo Farmacológico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioma/genética , Glioma/patología , Histonas/metabolismo , Humanos , Lisina/metabolismo , Metilación/efectos de los fármacos , Clasificación del Tumor , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteolisis/efectos de los fármacos , Transcripción Genética/efectos de los fármacos
19.
J Clin Invest ; 131(1)2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33108356

RESUMEN

Microglia maintain homeostasis in the brain. However, with age, they become primed and respond more strongly to inflammatory stimuli. We show here that microglia from aged mice had upregulated mTOR complex 1 signaling controlling translation, as well as protein levels of inflammatory mediators. Genetic ablation of mTOR signaling showed a dual yet contrasting effect on microglia priming: it caused an NF-κB-dependent upregulation of priming genes at the mRNA level; however, mice displayed reduced cytokine protein levels, diminished microglia activation, and milder sickness behavior. The effect on translation was dependent on reduced phosphorylation of 4EBP1, resulting in decreased binding of eIF4E to eIF4G. Similar changes were present in aged human microglia and in damage-associated microglia, indicating that upregulation of mTOR-dependent translation is an essential aspect of microglia priming in aging and neurodegeneration.


Asunto(s)
Envejecimiento/metabolismo , Microglía/enzimología , Biosíntesis de Proteínas , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Envejecimiento/genética , Animales , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/genética , Factor 4G Eucariótico de Iniciación/metabolismo , Humanos , Ratones , Ratones Transgénicos , FN-kappa B/genética , FN-kappa B/metabolismo , Fosforilación/genética , Serina-Treonina Quinasas TOR/genética
20.
Nat Cell Biol ; 23(12): 1224-1239, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34876685

RESUMEN

Defective silencing of retrotransposable elements has been linked to inflammageing, cancer and autoimmune diseases. However, the underlying mechanisms are only partially understood. Here we implicate the histone H3.3 chaperone Daxx, a retrotransposable element repressor inactivated in myeloid leukaemia and other neoplasms, in protection from inflammatory disease. Loss of Daxx alters the chromatin landscape, H3.3 distribution and histone marks of haematopoietic progenitors, leading to engagement of a Pu.1-dependent transcriptional programme for myelopoiesis at the expense of B-cell differentiation. This causes neutrophilia and inflammation, predisposing mice to develop an autoinflammatory skin disease. While these molecular and phenotypic perturbations are in part reverted in animals lacking both Pu.1 and Daxx, haematopoietic progenitors in these mice show unique chromatin and transcriptome alterations, suggesting an interaction between these two pathways. Overall, our findings implicate retrotransposable element silencing in haematopoiesis and suggest a cross-talk between the H3.3 loading machinery and the pioneer transcription factor Pu.1.


Asunto(s)
Cromatina/patología , Proteínas Co-Represoras/genética , Trastornos Leucocíticos/congénito , Chaperonas Moleculares/genética , Mielopoyesis/genética , Proteínas Proto-Oncogénicas/metabolismo , Transactivadores/metabolismo , Animales , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/patología , Linfocitos B/citología , Línea Celular , Cromatina/genética , Células Madre Hematopoyéticas/citología , Histonas/metabolismo , Humanos , Inflamación/patología , Trastornos Leucocíticos/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Retroelementos/genética , Enfermedades de la Piel/genética , Enfermedades de la Piel/inmunología , Enfermedades de la Piel/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA