Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mov Disord ; 39(1): 209-214, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38054570

RESUMEN

BACKGROUND: Biallelic intronic AAGGG repeat expansions in the replication factor complex subunit 1 (RFC1) gene were identified as the leading cause of cerebellar ataxia, neuropathy, vestibular areflexia syndrome. Patients exhibit significant clinical heterogeneity and variable disease course, but no potential biomarker has been identified to date. OBJECTIVES: In this multicenter cross-sectional study, we aimed to evaluate neurofilament light (NfL) chain serum levels in a cohort of RFC1 disease patients and to correlate NfL serum concentrations with clinical phenotype and disease severity. METHODS: Sixty-one patients with genetically confirmed RFC1 disease and 48 healthy controls (HCs) were enrolled from six neurological centers. Serum NfL concentration was measured using the single molecule array assay technique. RESULTS: Serum NfL concentration was significantly higher in patients with RFC1 disease compared to age- and-sex-matched HCs (P < 0.0001). NfL level showed a moderate correlation with age in both HCs (r = 0.4353, P = 0.0020) and patients (r = 0.4092, P = 0.0011). Mean NfL concentration appeared to be significantly higher in patients with cerebellar involvement compared to patients without cerebellar dysfunction (27.88 vs. 21.84 pg/mL, P = 0.0081). The association between cerebellar involvement and NfL remained significant after controlling for age and sex (ß = 0.260, P = 0.034). CONCLUSIONS: Serum NfL levels are significantly higher in patients with RFC1 disease compared to HCs and correlate with cerebellar involvement. Longitudinal studies are warranted to assess its change over time.


Asunto(s)
Filamentos Intermedios , Humanos , Estudios Transversales , Estudios Longitudinales , Fenotipo , Biomarcadores
2.
Brain ; 146(12): 5060-5069, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37450567

RESUMEN

Cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS) is an autosomal recessive neurodegenerative disease, usually caused by biallelic AAGGG repeat expansions in RFC1. In this study, we leveraged whole genome sequencing data from nearly 10 000 individuals recruited within the Genomics England sequencing project to investigate the normal and pathogenic variation of the RFC1 repeat. We identified three novel repeat motifs, AGGGC (n = 6 from five families), AAGGC (n = 2 from one family) and AGAGG (n = 1), associated with CANVAS in the homozygous or compound heterozygous state with the common pathogenic AAGGG expansion. While AAAAG, AAAGGG and AAGAG expansions appear to be benign, we revealed a pathogenic role for large AAAGG repeat configuration expansions (n = 5). Long-read sequencing was used to characterize the entire repeat sequence, and six patients exhibited a pure AGGGC expansion, while the other patients presented complex motifs with AAGGG or AAAGG interruptions. All pathogenic motifs appeared to have arisen from a common haplotype and were predicted to form highly stable G quadruplexes, which have previously been demonstrated to affect gene transcription in other conditions. The assessment of these novel configurations is warranted in CANVAS patients with negative or inconclusive genetic testing. Particular attention should be paid to carriers of compound AAGGG/AAAGG expansions when the AAAGG motif is very large (>500 repeats) or the AAGGG motif is interrupted. Accurate sizing and full sequencing of the satellite repeat with long-read sequencing is recommended in clinically selected cases to enable accurate molecular diagnosis and counsel patients and their families.


Asunto(s)
Ataxia Cerebelosa , Enfermedades del Sistema Nervioso Periférico , Síndrome , Enfermedades Vestibulares , Humanos , Vestibulopatía Bilateral , Ataxia Cerebelosa/genética , Ataxia Cerebelosa/diagnóstico , Enfermedades Neurodegenerativas , Enfermedades del Sistema Nervioso Periférico/diagnóstico , Enfermedades del Sistema Nervioso Periférico/genética , Enfermedades Vestibulares/diagnóstico , Enfermedades Vestibulares/genética
3.
Neurol Sci ; 43(9): 5553-5562, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35759065

RESUMEN

OBJECTIVES: To investigate the relationship between N20-P25 peak-to-peak amplitude (N20p-P25p) of somatosensory evoked potentials (SEPs) and the occurrence of abnormalities of the peripheral and/or central sensory pathways and of myoclonus/epilepsy, in 308 patients with increased SEPs amplitude from upper limb stimulation. METHODS: We compared cortical response (N20p-P25p) in different groups of patients identified by demographic, clinical, and neurophysiological factors and performed a cluster analysis for classifying the natural occurrence of subgroups of patients. RESULTS: No significant differences of N20p-P25p were found among different age-dependent groups, and in patients with or without PNS/CNS abnormalities of sensory pathways, while myoclonic/epileptic patients showed higher N20p-P25p than other groups. Cluster analysis identified four clusters of patients including myoclonus/epilepsy, central sensory abnormalities, peripheral sensory abnormalities, and absence of myoclonus and sensory abnormalities. CONCLUSIONS: Increased N20p-P25p prompts different possible pathophysiological substrates: larger N20p-P25p in patients with cortical myoclonus and/or epilepsy is likely sustained by strong cortical hyperexcitability, while milder increase of N20p-P25p could be underpinned by plastic cortical changes following abnormalities of sensory pathways, or degenerative process involving the cortex. SEPs increased in amplitude cannot be considered an exclusive hallmark of myoclonus/epilepsy. Indeed, in several neurological disorders, it may represent a sign of adaptive, plastic, and/or degenerative cortical changes.


Asunto(s)
Epilepsias Mioclónicas , Epilepsia , Mioclonía , Electroencefalografía , Potenciales Evocados Somatosensoriales/fisiología , Humanos , Nervio Mediano , Corteza Somatosensorial/fisiología
4.
Neurogenetics ; 22(4): 347-351, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34387792

RESUMEN

PLA2G6 is the causative gene for a group of autosomal recessive neurodegenerative disorders known as PLA2G6-associated neurodegeneration (PLAN). We present a case with early-onset parkinsonism, ataxia, cognitive decline, cerebellar atrophy, and brain iron accumulation. Sequencing of PLA2G6 coding regions identified only a heterozygous nonsense variant, but mRNA analysis revealed the presence of an aberrant transcript isoform due to a novel deep intronic variant (c.2035-274G > A) leading to activation of an intronic pseudo-exon. These results expand the genotypic spectrum of PLAN, showing the paramount importance of detecting possible pathogenic variants in deep intronic regions in undiagnosed patients.


Asunto(s)
Encéfalo/patología , Fosfolipasas A2 Grupo VI/genética , Mutación/genética , Enfermedad de Parkinson/genética , Adulto , Edad de Inicio , Atrofia/patología , Femenino , Humanos , Malformaciones del Sistema Nervioso/genética , Distrofias Neuroaxonales/genética , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/patología , Fenotipo
5.
Mol Genet Metab ; 134(4): 353-358, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34865968

RESUMEN

Alexander disease (AxD) is a leukodystrophy that primarily affects astrocytes and is caused by dominant variants in the Glial Fibrillary Acidic Protein gene. Three main classifications are currently used, the traditional one defined by the age of onset, and two more recent ones based on both clinical features at onset and brain MRI findings. In this study, we retrospectively included patients with genetically confirmed pediatric-onset AxD. Twenty-one Italian patients were enrolled, and we revised all their clinical and radiological data. Participants were divided according to the current classification systems. We qualitatively analyzed data on neurodevelopment and neurologic decline in order to identify the possible trajectories of the evolution of the disease over time. One patient suffered from a Neonatal presentation and showed a rapidly evolving course which led to death within the second year of life (Type Ia). 16 patients suffered from the Infantile presentation: 5 of them (here defined Type Ib) presented developmental delay and began to deteriorate by the age of 5. A second group (Type Ic) included patients who presented a delay in neuromotor development and started deteriorating after 6 years of age. A third group (Type Id) included patients who presented developmental delay and remained clinically stable beyond adolescence. In 4 patients, the age at last evaluation made it not possible to ascertain whether they belonged to Type Ic or Id, as they were too young to evaluate their neurologic decline. 4 patients suffered from the Juvenile presentation: they had normal neuromotor development with no or only mild cognitive impairment; the subsequent clinical evolution was similar to Type Ic AxD in 2 patients, to Id group in the other 2. In conclusion, our results confirm previously described findings about clinical features at onset; based on follow-up data we might classify patients with Type I AxD into four subgroups (Ia, Ib, Ic, Id). Further studies will be needed to confirm our results and to better highlight the existence of clinical and neuroradiological prognostic factors able to predict disease progression.


Asunto(s)
Enfermedad de Alexander/complicaciones , Adolescente , Adulto , Enfermedad de Alexander/clasificación , Niño , Preescolar , Progresión de la Enfermedad , Femenino , Proteína Ácida Fibrilar de la Glía/genética , Humanos , Lactante , Recién Nacido , Masculino , Mutación , Estudios Retrospectivos , Adulto Joven
6.
Eur J Neurol ; 28(9): 3040-3050, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34096670

RESUMEN

OBJECTIVE: To characterize ocular motor function in patients with Niemann-Pick disease type C (NPC). METHODS: In a multicontinental, cross-sectional study we characterized ocular-motor function in 72 patients from 12 countries by video-oculography. Interlinking with disease severity, we also searched for ocular motor biomarkers. Our study protocol comprised reflexive and self-paced saccades, smooth pursuit, and gaze-holding in horizontal and vertical planes. Data were compared with those of 158 healthy controls (HC). RESULTS: Some 98.2% of patients generated vertical saccades below the 95% CI of the controls' peak velocity. Only 46.9% of patients had smooth pursuit gain lower than that of 95% CI of HC. The involvement in both downward and upward directions was similar (51°/s (68.9, [32.7-69.3]) downward versus 78.8°/s (65.9, [60.8-96.8]) upward). Horizontal saccadic peak velocity and latency, vertical saccadic duration and amplitude, and horizontal position smooth pursuit correlated best to disease severity. Compensating strategies such as blinks to elicit saccades, and head and upper body movements to overcome the gaze palsy, were observed. Vertical reflexive saccades were more impaired and slower than self-paced ones. Gaze-holding was normal. Ocular-motor performance depended on the age of onset and disease duration. CONCLUSIONS: This is the largest cohort of NPC patients investigated for ocular-motor function. Vertical supranuclear saccade palsy is the hallmark of NPC. Vertical upward and downward saccades are equally impaired. Horizontal saccadic peak velocity and latency, vertical saccadic duration and amplitude, and horizontal position smooth pursuit can be used as surrogate parameters for clinical trials. Compensating strategies can contribute to establishing a diagnosis.


Asunto(s)
Enfermedad de Niemann-Pick Tipo C , Estudios Transversales , Movimientos Oculares , Humanos , Estudios Prospectivos , Movimientos Sacádicos
7.
Eur J Neurol ; 28(3): 934-944, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33190326

RESUMEN

BACKGROUND AND PURPOSE: Little is known about hypomyelinating leukodystrophies (HLDs) in adults. The aim of this study was to investigate HLD occurrence, clinical features, and etiology among undefined leukoencephalopathies in adulthood. METHODS: We recruited the patients with cerebral hypomyelinating magnetic resonance imaging pattern (mild T2 hyperintensity with normal or near-normal T1 signal) from our cohort of 62 adult index cases with undefined leukoencephalopathies, reviewed their clinical features, and used a leukoencephalopathy-targeted next generation sequencing panel. RESULTS: We identified 25/62 patients (~40%) with hypomyelination. Cardinal manifestations were spastic gait and varying degree of cognitive impairment. Etiology was determined in 44% (definite, 10/25; likely, 1/25). Specifically, we found pathogenic variants in the POLR3A (n = 2), POLR1C (n = 1), RARS1 (n = 1), and TUBB4A (n = 1) genes, which are typically associated with severe early-onset HLDs, and in the GJA1 gene (n = 1), which is associated with oculodentodigital dysplasia. Duplication of a large chromosome X region encompassing PLP1 and a pathogenic GJC2 variant were found in two patients, both females, with early-onset HLDs persisting into adulthood. Finally, we found likely pathogenic variants in PEX3 (n = 1) and PEX13 (n = 1) and potentially relevant variants of unknown significance in TBCD (n = 1), which are genes associated with severe, early-onset diseases with central hypomyelination/dysmyelination. CONCLUSIONS: A hypomyelinating pattern characterizes a relevant number of undefined leukoencephalopathies in adulthood. A comprehensive genetic screening allows definite diagnosis in about half of patients, and demonstrates the involvement of many disease-causing genes, including genes associated with severe early-onset HLDs, and genes causing peroxisome biogenesis disorders.


Asunto(s)
Enfermedades Desmielinizantes , Leucoencefalopatías , Adulto , Femenino , Humanos , Leucoencefalopatías/diagnóstico por imagen , Leucoencefalopatías/genética , Imagen por Resonancia Magnética , Proteínas Asociadas a Microtúbulos , Mutación
8.
Neurol Sci ; 42(1): 235-241, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32632637

RESUMEN

BACKGROUND: Adrenoleukodystrophy (ALD) encompasses different neurological phenotypes, ranging from the most severe cerebral forms (C-ALD) to the less severe adrenomyeloneuropathy (AMN). As visual system can be varyingly involved, we aimed at exploring whether optical coherence tomography (OCT) may detect retinal abnormalities and their longitudinal changes in adult ALD patients. METHODS: In this cross-sectional and longitudinal study, we measured the thicknesses of peripapillary retinal nerve fiber layer (pRNFL), macular ganglion cell complex (mGCC), and segmented inner and outer macula at baseline and their changes over time in 11 symptomatic adult ALD males and 10 age- and sex-matched healthy controls. Statistical analyses were performed for the patients as complete group, and splitting them into two subgroups, one (C-ALD) with and the other (AMN) without cerebral parieto-occipital white matter (WM) lesions. RESULTS: In the complete ALD group and in the C-ALD subgroup, the average pRNFL, mGCC, and inner macula were significantly thinner than in controls (p ≤ 0.01), whereas in the AMN subgroup, they were constantly, though non-significantly, thinner. Significant outer macula thinning was also observed (p < 0.01). In the complete ALD group, follow-up assessment (mean 26.8 months, range 8-48) showed mildly progressive thinning of inferior pRNFL, average mGCC, and inner macula. CONCLUSIONS: In adult ALD patients, OCT can reveal retinal abnormalities which are prominent in the more compromised patients, namely those with parieto-occipital WM lesions. The inferior pRNFL, average mGCC and inner macula thicknesses might be sensitive-to-change OCT parameters, but their utility and consistency for short-term longitudinal studies deserve further investigations.


Asunto(s)
Adrenoleucodistrofia , Tomografía de Coherencia Óptica , Adrenoleucodistrofia/diagnóstico por imagen , Adulto , Estudios Transversales , Humanos , Estudios Longitudinales , Masculino , Fibras Nerviosas , Células Ganglionares de la Retina
9.
J Am Coll Nutr ; 39(6): 557-562, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31860384

RESUMEN

Objective: An anaplerotic diet with the odd-chain triglyceride (triheptanoin-C7TG) supplementation was tested as a therapy for Adult Polyglucosan Body Disease (APBD) and is currently being assessed for various metabolic disorders. The aim of this study was to determine any unknown long-term effect of C7TG supplementation on the nutritional status, body composition, resting energy expenditure and biochemical parameters of two siblings with APBD.Methods: Two adult siblings with APBD were treated over a 2-year period with a high fat, low carbohydrate diet, with C7TG oil representing about 30% of the daily caloric intake. We carried out a long-term longitudinal study to determine weight, height, waist circumference; total, intra and extra cellular water by bioimpedance; body fat, lean mass, and bone mineral density by DEXA; resting energy expenditure by indirect calorimeter; glucose and lipid profiles.Results: C7TG supplementation failed to prevent APBD progression, corroborating recent literature. However, long-term C7TG supplementation did not produce any appreciable changes in nutritional status, body composition, resting energy expenditure or biochemical parameters, and no evidence was found of potential adverse effects.Conclusions: Our data suggest that maintenance of C7TG over a 2-year period still leaves a good safety profile in terms of nutritional status, body composition, resting energy expenditure, and biochemical parameters. However further studies involving larger sample sizes, also other diseases, are needed for a deeper understanding of its long-term effects.


Asunto(s)
Estado Nutricional , Hermanos , Adulto , Composición Corporal , Suplementos Dietéticos , Metabolismo Energético , Enfermedad del Almacenamiento de Glucógeno , Humanos , Estudios Longitudinales , Enfermedades del Sistema Nervioso , Triglicéridos
10.
J Neurol Neurosurg Psychiatry ; 90(2): 211-218, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30150321

RESUMEN

In adulthood, spinal cord MRI abnormalities such as T2-weighted hyperintensities and atrophy are commonly associated with a large variety of causes (inflammation, infections, neoplasms, vascular and spondylotic diseases). Occasionally, they can be due to rare metabolic or genetic diseases, in which the spinal cord involvement can be a prominent or even predominant feature, or a secondary one. This review focuses on these rare diseases and associated spinal cord abnormalities, which can provide important but over-ridden clues for the diagnosis. The review was based on a PubMed search (search terms: 'spinal cord' AND 'leukoencephalopathy' OR 'leukodystrophy'; 'spinal cord' AND 'vitamin'), further integrated according to the authors' personal experience and knowledge. The genetic and metabolic diseases of adulthood causing spinal cord signal alterations were identified and classified into four groups: (1) leukodystrophies; (2) deficiency-related metabolic diseases; (3) genetic and acquired toxic/metabolic causes; and (4) mitochondrial diseases. A number of genetic and metabolic diseases of adulthood causing spinal cord atrophy without signal alterations were also identified. Finally, a classification based on spinal MRI findings is presented, as well as indications about the diagnostic work-up and differential diagnosis. Some of these diseases are potentially treatable (especially if promptly recognised), while others are inherited as autosomal dominant trait. Therefore, a timely diagnosis is needed for a timely therapy and genetic counselling. In addition, spinal cord may be the main site of pathology in many of these diseases, suggesting a tempting role for spinal cord abnormalities as surrogate MRI biomarkers.


Asunto(s)
Leucoencefalopatías/complicaciones , Enfermedades Metabólicas/complicaciones , Enfermedades Mitocondriales/complicaciones , Enfermedades de la Médula Espinal/genética , Enfermedades de la Médula Espinal/metabolismo , Adulto , Edad de Inicio , Humanos
11.
Am J Med Genet A ; 179(11): 2277-2283, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31436889

RESUMEN

Pathogenic variants in polynucleotide kinase 3'-phosphatase (PNKP) gene have been associated with two distinct clinical presentations: autosomal recessive microcephaly, seizures, and developmental delay (MCSZ; MIM 613402) and ataxia with oculomotor apraxia type 4 (AOA4; MIM 616267). More than 40 patients have been reported so far, and their clinical presentations revealed a continuum phenotypic spectrum ranging from congenital microcephaly and early-onset intractable seizures, to adult onset slowly progressive sensory-motor neuropathy and cerebellar ataxia. We describe three unrelated Italian patients with different phenotypes and novel or recurrent pathogenic variants in PNKP gene. Patient 1, homozygous for the recurrent frameshift variant (p.Thr424Glyfs*49), had an early-onset MCSZ phenotype. Late in the disease progression, cerebellar ataxia and peripheral neuropathy were recognized. Patient 2, homozygous for a frameshift variant (p.Ala429Thrfs*42), presented a phenotype partially consistent with MCSZ including microcephaly and developmental delay, but without seizures. Patient 3 is one of the oldest patients described to date and presented polyneuropathy, and cerebellar signs. Biochemical tests showed abnormalities of cholesterol, albumin, or alpha-fetoprotein plasma levels. The clinical presentation of our patients encompassed early-to-adult-onset manifestations. For these cases, the long clinical follow-up allowed an in-depth phenotypic characterization and a better delineation of the natural history of patients carrying PNKP pathogenic variants.


Asunto(s)
Ataxia Cerebelosa/diagnóstico , Ataxia Cerebelosa/genética , Enzimas Reparadoras del ADN/genética , Microcefalia/diagnóstico , Microcefalia/genética , Mutación , Fenotipo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Adulto , Factores de Edad , Alelos , Biomarcadores , Diagnóstico Diferencial , Electroencefalografía , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Lactante , Masculino , Persona de Mediana Edad
12.
Metab Brain Dis ; 34(6): 1565-1575, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31332729

RESUMEN

Mutations in the thyroid hormone transporter MCT8 cause severe intellectual and motor disability and abnormal serum thyroid function tests, a syndrome known as MCT8 deficiency (or: Allan-Herndon-Dudley syndrome, AHDS). Although the majority of patients are unable to sit or walk independently and do not develop any speech, some are able to walk and talk in simple sentences. Here, we report on two cases with such a less severe clinical phenotype and consequent gross delay in diagnosis. Genetic analyses revealed two novel hemizygous mutations in the SLC16A2 gene resulting in a p.Thr239Pro and a p.Leu543Pro substitution in the MCT8 protein. In vitro studies in transiently transfected COS-1 and JEG-3 cells, and ex vivo studies in patient-derived fibroblasts revealed substantial residual uptake capacity of both mutant proteins (Leu543Pro > Thr239Pro), providing an explanation for the less severe clinical phenotype. Both mutations impair MCT8 protein stability and interfere with proper subcellular trafficking. In one of the patients calcifications were observed in the basal ganglia at the age of 29 years; an abnormal neuroradiological feature at this age that has been linked to untreated (congenital) hypothyroidism and neural cretinism. Our studies extend on previous work by identifying two novel pathogenic mutations in SLC16A2 gene resulting in a mild clinical phenotype.


Asunto(s)
Discapacidad Intelectual Ligada al Cromosoma X/genética , Transportadores de Ácidos Monocarboxílicos/genética , Hipotonía Muscular/genética , Atrofia Muscular/genética , Mutación , Fenotipo , Simportadores/genética , Encéfalo/diagnóstico por imagen , Niño , Genotipo , Humanos , Imagen por Resonancia Magnética , Masculino , Discapacidad Intelectual Ligada al Cromosoma X/diagnóstico por imagen , Hipotonía Muscular/diagnóstico por imagen , Atrofia Muscular/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Adulto Joven
13.
J Peripher Nerv Syst ; 22(1): 59-63, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27982499

RESUMEN

We report the first Italian family affected by hereditary gelsolin amyloidosis (HGA), a rare autosomal dominant disease characterized by adult-onset slowly progressive cranial neuropathy, lattice corneal dystrophy, and cutis laxa. The index case was a 39-year-old male with a 9-year history of progressive bilateral facial nerve palsy. His mother had two episodes of acute facial palsy, and his maternal aunt and grandfather were also affected. Electrophysiological studies confirmed bilateral facial nerve involvement, without signs of peripheral polyneuropathy, and ophthalmological examination showed bilateral lattice corneal dystrophy, in both the index case and his mother. Gelsolin-gene sequencing revealed the heterozygous c.640G>A mutation (p.Asp187Asn) in the proband, his mother and aunt and also in three apparently asymptomatic relatives. The majority of HGA patients come from Finland, although several cases have been reported from other countries. HGA should be considered in the differential diagnosis of progressive or recurrent bilateral facial neuropathy.


Asunto(s)
Amiloidosis Familiar/complicaciones , Amiloidosis Familiar/genética , Parálisis Facial/etiología , Gelsolina/genética , Mutación/genética , Adulto , Progresión de la Enfermedad , Salud de la Familia , Humanos , Masculino
14.
Brain ; 139(Pt 6): 1735-46, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27068048

RESUMEN

Adrenomyeloneuropathy is the late-onset form of X-linked adrenoleukodystrophy, and is considered the most frequent metabolic hereditary spastic paraplegia. In adrenomyeloneuropathy the spinal cord is the main site of pathology. Differently from quantitative magnetic resonance imaging of the brain, little is known about the feasibility and utility of advanced neuroimaging in quantifying the spinal cord abnormalities in hereditary diseases. Moreover, little is known about the subtle pathological changes that can characterize the brain of adrenomyeloneuropathy subjects in the early stages of the disease. We performed a cross-sectional study on 13 patients with adrenomyeloneuropathy and 12 age-matched healthy control subjects who underwent quantitative magnetic resonance imaging to assess the structural changes of the upper spinal cord and brain. Total cord areas from C2-3 to T2-3 level were measured, and diffusion tensor imaging metrics, i.e. fractional anisotropy, mean, axial and radial diffusivity values were calculated in both grey and white matter of spinal cord. In the brain, grey matter regions were parcellated with Freesurfer and average volume and thickness, and mean diffusivity and fractional anisotropy from co-registered diffusion maps were calculated in each region. Brain white matter diffusion tensor imaging metrics were assessed using whole-brain tract-based spatial statistics, and tractography-based analysis on corticospinal tracts. Correlations among clinical, structural and diffusion tensor imaging measures were calculated. In patients total cord area was reduced by 26.3% to 40.2% at all tested levels (P < 0.0001). A mean 16% reduction of spinal cord white matter fractional anisotropy (P ≤ 0.0003) with a concomitant 9.7% axial diffusivity reduction (P < 0.009) and 34.5% radial diffusivity increase (P < 0.009) was observed, suggesting co-presence of axonal degeneration and demyelination. Brain tract-based spatial statistics showed a marked reduction of fractional anisotropy, increase of radial diffusivity (P < 0.001) and no axial diffusivity changes in several white matter tracts, including corticospinal tracts and optic radiations, indicating predominant demyelination. Tractography-based analysis confirmed the results within corticospinal tracts. No significant cortical volume and thickness reduction or grey matter diffusion tensor imaging values alterations were observed in patients. A correlation between radial diffusivity and disease duration along the corticospinal tracts (r = 0.806, P < 0.01) was found. In conclusion, in adrenomyeloneuropathy patients quantitative magnetic resonance imaging-derived measures identify and quantify structural changes in the upper spinal cord and brain which agree with the expected histopathology, and suggest that the disease could be primarily caused by a demyelination rather than a primitive axonal damage. The results of this study may also encourage the employment of quantitative magnetic resonance imaging in other hereditary diseases with spinal cord involvement.


Asunto(s)
Adrenoleucodistrofia/diagnóstico por imagen , Adrenoleucodistrofia/patología , Encéfalo/patología , Médula Espinal/patología , Adulto , Anisotropía , Estudios de Casos y Controles , Estudios Transversales , Imagen de Difusión Tensora/métodos , Imagen de Difusión Tensora/estadística & datos numéricos , Sustancia Gris/patología , Humanos , Masculino , Neuroimagen/estadística & datos numéricos , Sustancia Blanca/patología , Adulto Joven
16.
Am J Med Genet B Neuropsychiatr Genet ; 174(7): 732-739, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28766925

RESUMEN

FLVCR1 encodes for a ubiquitous heme exporter, whose recessive mutations cause posterior column ataxia with retinitis pigmentosa (PCARP). Recently, FLVCR1 recessive mutations were also found in two sporadic children with hereditary sensory-autonomic neuropathy (HSAN). We report the unique case of a 33-year-old Italian woman with a combination of typical PCARP, sensory-autonomic neuropathy with sensory loss to all modalities and multiple autonomic dysfuctions, and acute lymphocytic leukemia. Molecular analysis demonstrated homozygosity for the previously identified FLVCR1 p.Pro221Ser variation. The same variation, in combination with a frameshift mutation, was previously identified in an Italian child with HSAN. Functional studies carried out on patient-derived lymphoblastoid cell lines showed decreased FLVCR1a transcript, increased reactive oxygen species, excessive intracellular heme accumulation, and increased number of Annexin V positive cells. This indicates that the homozygous p.Pro221Ser FLVCR1 variation compromises the ability of FLVCR1a to export heme leading to enhanced susceptibility to programmed cell death. Our study demonstrates the existence of a phenotypic continuum among the discrete disorders previously linked to FLVCR1 mutations, and suggests that the related alteration of heme metabolism may lead to the degeneration of specific neuronal cell populations.


Asunto(s)
Ataxia/genética , Neuropatías Hereditarias Sensoriales y Autónomas/genética , Leucemia/genética , Proteínas de Transporte de Membrana/genética , Mutación , Receptores Virales/genética , Retinitis Pigmentosa/genética , Adulto , Ataxia/complicaciones , Ataxia/patología , Femenino , Neuropatías Hereditarias Sensoriales y Autónomas/complicaciones , Neuropatías Hereditarias Sensoriales y Autónomas/patología , Homocigoto , Humanos , Leucemia/complicaciones , Leucemia/patología , Linaje , Pronóstico , Retinitis Pigmentosa/complicaciones , Retinitis Pigmentosa/patología
17.
Brain ; 137(Pt 7): 1907-20, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24833714

RESUMEN

Hereditary spastic paraplegias are a heterogeneous group of neurodegenerative disorders, clinically classified in pure and complex forms. Genetically, more than 70 different forms of spastic paraplegias have been characterized. A subgroup of complicate recessive forms has been distinguished for the presence of thin corpus callosum and white matter lesions at brain imaging. This group includes several genetic entities, but most of the cases are caused by mutations in the KIAA1840 (SPG11) and ZFYVE26 genes (SPG15). We studied a cohort of 61 consecutive patients with complicated spastic paraplegias, presenting at least one of the following features: mental retardation, thin corpus callosum and/or white matter lesions. DNA samples were screened for mutations in the SPG11/KIAA1840, SPG15/ZFYVE26, SPG21/ACP33, SPG35/FA2H, SPG48/AP5Z1 and SPG54/DDHD2 genes by direct sequencing. Sequence variants were found in 30 of 61 cases: 16 patients carried SPG11/KIAA1840 gene variants (26.2%), nine patients carried SPG15/ZFYVE26 variants (14.8%), three patients SPG35/FA2H (5%), and two patients carried SPG48/AP5Z1 gene variants (3%). Mean age at onset was similar in patients with SPG11 and with SPG15 (range 11-36), and the phenotype was mostly indistinguishable. Extrapyramidal signs were observed only in patients with SPG15, and epilepsy in three subjects with SPG11. Motor axonal neuropathy was found in 60% of cases with SPG11 and 70% of cases with SPG15. Subjects with SPG35 had intellectual impairment, spastic paraplegia, thin corpus callosum, white matter hyperintensities, and cerebellar atrophy. Two families had a late-onset presentation, and none had signs of brain iron accumulation. The patients with SPG48 were a 5-year-old child, homozygous for a missense SPG48/AP5Z1 variant, and a 51-year-old female, carrying two different nonsense variants. Both patients had intellectual deficits, thin corpus callosum and white matter lesions. None of the cases in our cohort carried mutations in the SPG21/ACP33 and SPG54/DDH2H genes. Our study confirms that the phenotype of patients with SPG11 and with SPG15 is homogeneous, whereas cases with SPG35 and with SPG48 cases present overlapping features, and a broader clinical spectrum. The large group of non-diagnosed subjects (51%) suggests further genetic heterogeneity. The observation of common clinical features in association with defects in different causative genes, suggest a general vulnerability of the corticospinal tract axons to a wide spectrum of cellular alterations.


Asunto(s)
Variación Genética/genética , Fenotipo , Proteínas/genética , Paraplejía Espástica Hereditaria/genética , Paraplejía Espástica Hereditaria/fisiopatología , Adolescente , Adulto , Encéfalo/patología , Proteínas Portadoras/genética , Niño , Preescolar , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Oxigenasas de Función Mixta/genética , Proteínas/clasificación , Índice de Severidad de la Enfermedad , Adulto Joven
18.
J Peripher Nerv Syst ; 19(2): 183-6, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24863494

RESUMEN

X-linked Charcot-Marie-Tooth type 1 (CMTX1) is the second most common type of CMT and is caused by mutations in the Gap-Junction Beta-1 gene (GJB1), encoding connexin 32 which is expressed in Schwann cells as well as in oligodendrocytes. More than 400 GJB1 mutations have been described to date. Many mutation-carrier males have subclinical central nervous system (CNS) involvement, a few show mild CNS clinical signs, whereas only rarely overt though transient CNS dysfunction occurs. We report a 29-year-old man with CMTX1 who, at 16 years, showed short-lived CNS symptoms with transitory white matter abnormalities on cerebral magnetic resonance imaging (MRI) as first clinical presentation of a novel GJB1 mutation (p.Gln99_His100insGln). He had three consecutive episodes of right hemiparesis, together with sensory loss in the paretic limbs and expressive aphasia, all lasting a few hours, over a 2-day period, with concurrent white matter hyperintensity on MRI. These "stroke-like" episodes occurred just after arriving at sea level, after travelling from home at 700 m of altitude. Only a few years later did symptoms of peripheral neuropathy appear. In conclusion, CMTX1 should be included in the differential diagnosis of diseases characterized by transient CNS symptoms and white matter abnormalities on MRI.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/fisiopatología , Conexinas/genética , Mutación/genética , Accidente Cerebrovascular/fisiopatología , Adulto , Encéfalo/patología , Humanos , Imagen por Resonancia Magnética , Masculino , Proteína beta1 de Unión Comunicante
19.
AJNR Am J Neuroradiol ; 45(6): 769-772, 2024 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-38697787

RESUMEN

BACKGROUND AND PURPOSE: While classic brain MR imaging features of Alexander disease have been well-documented, lesional patterns can overlap with other leukodystrophies, especially in the early stages of the disease or in milder phenotypes. We aimed to assess the utility of a new neuroimaging sign to help increase the diagnostic specificity of Alexander disease. MATERIALS AND METHODS: A peculiar bilateral symmetric hyperintense signal on T2-weighted images affecting the medulla oblongata was identified in an index patient with type I Alexander disease. Subsequently, 5 observers performed a systematic MR imaging review for this pattern by examining 55 subjects with Alexander disease and 74 subjects with other leukodystrophies. Interobserver agreement was assessed by the κ index. Sensitivity, specificity, and receiver operating characteristic curves were determined. RESULTS: The identified pattern was present in 87% of subjects with Alexander disease and 14% of those without Alexander disease leukodystrophy (P < .001), 3 with vanishing white matter, 4 with adult polyglucosan body disease, and 3 others. It was found equally in both type I and type II Alexander disease (28/32, 88% versus 18/21, 86%; P = .851) and in subjects with unusual disease features (2/2). Sensitivity (87.3%; 95% CI, 76.0%-93.7%), specificity (86.5%; 95% CI, 76.9%-92.5%), and interobserver agreement (κ index = 0.82) were high. CONCLUSIONS: The identified pattern in the medulla oblongata, called the chipmunk sign due to its resemblance to the face of this rodent, is extremely common in subjects with Alexander disease and represents a diagnostic tool that can aid in early diagnosis, especially in subjects with otherwise atypical MR imaging findings and/or clinical features.


Asunto(s)
Enfermedad de Alexander , Imagen por Resonancia Magnética , Sensibilidad y Especificidad , Humanos , Enfermedad de Alexander/diagnóstico por imagen , Masculino , Femenino , Adulto , Imagen por Resonancia Magnética/métodos , Persona de Mediana Edad , Adulto Joven , Adolescente , Tronco Encefálico/diagnóstico por imagen , Tronco Encefálico/patología , Niño , Anciano , Bulbo Raquídeo/diagnóstico por imagen , Bulbo Raquídeo/patología , Preescolar
20.
Cell Rep Med ; 5(7): 101647, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39019006

RESUMEN

Congenital hydrocephalus (CH), occurring in approximately 1/1,000 live births, represents an important clinical challenge due to the limited knowledge of underlying molecular mechanisms. The discovery of novel CH genes is thus essential to shed light on the intricate processes responsible for ventricular dilatation in CH. Here, we identify FLVCR1 (feline leukemia virus subgroup C receptor 1) as a gene responsible for a severe form of CH in humans and mice. Mechanistically, our data reveal that the full-length isoform encoded by the FLVCR1 gene, FLVCR1a, interacts with the IP3R3-VDAC complex located on mitochondria-associated membranes (MAMs) that controls mitochondrial calcium handling. Loss of Flvcr1a in mouse neural progenitor cells (NPCs) affects mitochondrial calcium levels and energy metabolism, leading to defective cortical neurogenesis and brain ventricle enlargement. These data point to defective NPCs calcium handling and metabolic activity as one of the pathogenetic mechanisms driving CH.


Asunto(s)
Calcio , Hidrocefalia , Proteínas de Transporte de Membrana , Mitocondrias , Células-Madre Neurales , Receptores Virales , Animales , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Mitocondrias/metabolismo , Hidrocefalia/metabolismo , Hidrocefalia/genética , Hidrocefalia/patología , Calcio/metabolismo , Humanos , Receptores Virales/metabolismo , Receptores Virales/genética , Ratones , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Neurogénesis/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA